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1. Introduction

With the release of the Microsoft Kinect v2 in 2013, Time-of-Flight (ToF) depth imaging has
finally made the leap into mass production and consumer markets. Yet most available systems
still suffer from only partially understood systematic errors. These prevent them from reaching
their full theoretical potential regarding accuracy and reproducibility of depth measurements.

While there are obvious limitations with certain scene properties such as reflective or strongly
absorbing surfaces that require smart post processing of the data, the systematic errors should
be dealt with as early in the pipeline as possible to simplify the process.

In this paper, the effects of in-camera light scattering are investigated. Previous work on
scattering was limited to the processed data most camera systems provide, leading to very
complex models. By working directly on the raw data of the camera, we can use the simplest
possible physical scattering model with just one single scene independent camera parameter,
which proves to be a good approximation of the process.

The model requires a calibration of the raw data, which is also introduced here. With this
approach we are able to reduce the depth error due to scattering by 90%, compared to 70% in
the most recent related work (cf. [1]). Even though we only present work based on the PMD
CamCube 3, similar effects are apparent in other cameras (cf. Sect. 5) and can probably be



generalized to most ToF systems.

Preliminaries and notation In the following we briefly recall some relevant basics about the
acquisition of depth maps by ToF cameras. Details can be found e.g. in [2–4].

To determine the depth of a scene, a ToF camera illuminates the scene with modulated IR
light and records the reflected illumination at n different internal phase shifts. We refer to these
recordings as sub-frames, denoted by Ii(x,y), i = 1, . . . ,n. We assume n = 4, which is the stan-
dard for most current ToF cameras. Furthermore, the camera has two taps A and B. Each tap
measures all four of the Ii, but tap B measures them in a different order: 3,4,1,2. The two
corresponding measurements are then combined or averaged for further processing. From the
sub-frames Ii the amplitude a and phase ϕ of the reflected signal can be retrieved as

a(x,y) =
1
2

√
(I4(x,y)− I2(x,y))2 +(I1(x,y)− I3(x,y))2, (1)

ϕ(x,y) = arctan
(

I4(x,y)− I2(x,y)
I1(x,y)− I3(x,y)

)
, (2)

where the phase ϕ(x,y) is directly proportional to the depth of the scene, i.e. the radial distance
from the object at (x,y) to the camera position. To simplify the notation, we will omit the
dependence of Ii and ϕ on the coordinates (x,y) in the following.

In the standard error model it is assumed that each Ii is affected independently by additive
zero-mean Gaussian noise of variance σ2. It can be shown (cf. [5, 6]) that the resulting noise
in ϕ is Gaussian with mean zero and variance σ2

ϕ = σ2

2a2 depending on the amplitude a of the
recorded signal. In particular, we observe from this model that any individual distortion of the
Ii affects darker regions far stronger than brighter regions.

2. Intensity calibration

There exist several papers on distance calibration of ToF cameras which have taken intensity
and integration time into account (e.g. [7–9]). In other publications (cf. [10]), the influence of
the intensity on the distance error was doubted, because a physical explanation for it had not
been proposed previously. However, in the next section, we identify the scattering effect as one
intensity dependent error source.

Before dealing with this effect, we introduce a new relative calibration for ToF cameras which
is necessary for the subsequent signal decomposition. Our calibration approach is based on
camera parameters and does not require an extensive lookup table, contrary to other approaches.
All of these parameters can be measured from the dark signal of the camera. An explanation
for the dependency of the depth measurement on temperature and integration time will also be
proposed.

Close inspection of the raw data reveals a dark signal Ii
dark that can be decomposed into two

parts: an integration time independent offset Ii
o f f and an integration time dependent signal Ii

dc
caused by the dark current. Ii

dc follows a power function (cf. Fig. 1 left) with an exponent γ:

Ii
dark = Ii

o f f +(Ii
dc)

γ = Ii
o f f +(iidc · tint)

γ . (3)

Furthermore, these parameters vary for each pixel and tap (e.g. γ̄ = 1.32±0.08 average value
and standard deviation over the whole sensor for tap A). The offset Ii

o f f is very sensitive to tem-
perature changes. The dark current and the exponent γ are rather constant pixel parameters with
Ii
dc increasing linearly with the integration time tint . This is very important for the calibration

process, because the offset can be measured quickly, while measuring the exponent γ is much
more complex.
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Fig. 1. Left: Mean dark signal of a single pixel, averaged over 100 frames at two different
camera temperatures. The fitted function is according to Eq. (3). The different temperatures
are set by warming up the camera at a constant integration time but different frame rates.
For recording the data points at varying integration times but constant camera temperatures,
the integration time increase is compensated by an appropriately reduced frame rate. Cen-
ter/Right: Mean dark signal sub-frame difference and error of a single pixel, compared to
the first sub-frame, averaged over 100 frames for different frame rates (10 and 20fps) and
different integration times (200 and 2000 µs). Camera temperature is in steady state at ev-
ery measurement. The time on the x-axis gives the time since the last frame was recorded.
The difference increases with lower frame rates and lower integration times.

The actually measured intensity signal Ii in each pixel and subframe is equal to the dark
signal and an additional, also integration time dependent light current signal Ilc:

Ii = Ii
o f f +

(
Ii
dc + Ii

lc
)γ

= Ii
o f f +

(
iidc · tint + iilc · tint

)γ
. (4)

The light current signal Ilc is not only dependent on the incident light and on the integration
time, but also on the sensor modulation.
A close examination of the dark signal of the four individual sub-frames reveals an increase in
intensity (cf. Fig. 1 center/right). This is probably a very short-term temperature effect due to
the difference in heating power during active and inactive time periods. Consequently, this sub-
frame offset difference is reduced if the active periods of the sensor are prolonged (in relation
to the passive periods) by increasing the integration time or the frame rate. This effect can also
explain a dependency of the depth measurements on integration time and on temperature.
This short-term effect strongly depends on the frame rate. Reproducible results can only be
obtained with a constant and controllable frame rate, requiring a good timing control of the
camera during acquisition. For the measurements presented here, the camera acquisition was
software triggered in fixed time intervals. This setting was accurate enough for our purposes.

3. Internal scattering

Previous papers on internal scattering employ models based on a point spread function (cf.
[1, 11]), empirical local scattering functions (cf. [12]), reference data (cf. [13]) or heuristic
functions (cf. [14, 15]). All of these methods use the amplitude and phase data for the pro-
cessing. While the point spread functions in [1, 11] have a physical justification, omission of
illumination changes in a scene with foreground and background objects and restriction to the
nonlinear processed data are weaknesses of the approach. The models used in [14,15] lack any
physical motivation and are limited to very specific scene configurations of two parallel planes,
perpendicular to the optical axis.



Fig. 2. Scattering effect. Incident light is scattered diffusely and spread over the whole
sensor area.

The assumption in our approach is that a small fraction of the light entering the camera lens
is scattered diffusely and then spread over the whole sensor (cf. Fig. 2). This is the simplest
possible physical model of scattering, as it is fully parameterized by the relation of diffusely
versus directly transferred light. The scattering parameter is an intrinsic property of the optical
system and completely scene independent. The actual scattering properties of the system might
vary, but it is a good first order approximation, as demonstrated by the results. In order to be
able to perform a simple correction, we need to apply our method to the raw data of the ToF
camera.

To model the scatting, we decompose the light current signal of each pixel and subframe Ii
lc

from Eq. (4) into the unscattered incident light Ii
li and a scattered part. This depends on the

camera scattering parameter s and the total incident light Īi
li, averaged over the whole subframe:

Ii
lc := Ii

li + s · Īi
li. (5)

This is an approximation as also light from outside the field of view can enter the lens and
cause scattering. The scattering parameter s is assumed to vary only slightly over the image
domain (cf. Fig. 3 right). As a consequence, we approximate it by a constant value. We will see
below that this single, global camera specific parameter suffices to effectively remove internal
scattering. Inserting Eq. (5) into Eq. (4) we obtain

Ii = Ii
o f f +

(
Ii
dc + Ii

li + s · Īi
li
)γ
, (6)

which can be reformulated to yield only the unscattered linear light signal:

Ii
li =

(
Ii− Ii

o f f
)1/γ − Ii

dc− s · Īi
li. (7)

Determining Ii
o f f , γ and Ii

dc is part of the calibration (cf. Sect. 2). What is left to determine is s
and the average unscattered light Īi

li. The latter can easily be extracted from Eq. (7) by averaging
it over the whole subframe:

Īi
li =

1
1+ s

Īi
lc =

1
1+ s

((
Ii− Ii

o f f

)1/γ

− Īi
dc

)
, (8)

where x̄ denotes the average of x over the whole image domain. Please note the impact of Eq. (6)
on the depth measurement by the ToF camera: The systematic errors Ii

o f f , Ii
dc, s · Īi

li and γ affect



the sub-frames Ii independently. When applying Ii in Eq. (2), due to the nonlinear dependency
of ϕ on Ii, these errors can cause a significant distortion of the depth.

To measure the scattering parameter s, we propose the following approach. A scene is
recorded twice with different reflectivity only in a specific area of the image (=scattering area),
while the reflectivity in the other part (=measurement area) stays unchanged (cf. Fig. 3). It is
important to only change the reflectivity and not the scene setup in general, as this would cause
a difference in the overall illumination situation. The result is a difference in the mean un-
scattered light signal Īi

li of the whole frame, while Ii
li remains the same for the pixels in the

measurement area. This area can be used to calculate s with Eqs. (5) and (8). Equation (5)
results in:

Ii
li,1

!
= Ii

li,2 (in measurement area) (9)

⇔ Ii
lc,1− s · Īi

li,1 = Ii
lc,2− s · Īi

li,2 (10)

⇔ s =
Ii
lc,1− Ii

lc,2

Īi
li,1− Īi

li,2
. (11)

This equation is valid for every pixel in the measurement area and because we assume a constant
scattering parameter s it can be averaged. The average values of the measurement area are
denoted as Ĩi to differentiate them from the average values of the whole subframe Īi. Employing
Eq. (8) results in:

s =
Ĩi
lc,1− Ĩi

lc,2
1

1+s (Ī
i
lc,1− Īi

lc,2)
(12)

⇔ s =
Ĩi
lc,1− Ĩi

lc,2

(Īi
lc,1− Īi

lc,2)− (Ĩi
lc,1− Ĩi

lc,2)
. (13)

On top of averaging over the whole measurement area, s can also be averaged over the different
subframes. Please note again that s is independent from the scene and thus the measurement of
s can be performed offline. The scattering correction can be done directly with Eqs. (5), (7) and
(8):

Ii
li = Ii

lc−
s

1+ s
Īi
lc. (14)

4. Experiments

Table 1. Mean depth of the different depth data from the crops in Fig. 4 in the same order.

Mean depth [m] w/o Scattering Object Std. dev. w/ Scattering Object Std. dev.
Uncorrected −2.123 ±0.056 −2.091 ±0.072
Calibrated −2.121 ±0.055 −2.089 ±0.072
Final result −2.122 ±0.056 −2.119 ±0.055

To determine s for a particular camera, a scene is set up (cf. Fig. 3) with no bright objects
outside the frame. A bright object is placed in the foreground to serve as a strongly scattering
source. It is purposely not aligned perpendicular to the optical axis to avoid reflections between
its flat surface and the camera lens. Specular reflections of the light sources would either cause



Fig. 3. Raw data of the scene to measure the scattering parameter s. The scattering surface
is positioned at an angle to avoid direct reflections of the light sources. In the left part
(measurement area), the unscattered incident light Ii

li is considered equal (cf. Eq. (9)). The
two crops on the right show the difference of the two raw intensities in the measurement
area on the left and the scattering parameter s for each pixel. The scattering parameter
shows a slight scene dependency but is mostly dominated by noise. (Brightness and contrast
adjusted.)

Table 2. Mean phase shift of the different measurements from the areas highlighted in
Fig. 5. There is a slight overcompensation in area C of the cylinder scene, probably due to
in-scene scattering.

Mean phase shift [rad] w/o Scat. Object Std. dev. w/ Scat. Object Std. dev.
A Uncorrected 2.22 ±0.05 2.19 ±0.06
A Calibrated 2.21 ±0.04 2.18 ±0.05
A Final result 2.20 ±0.04 2.22 ±0.04
B Uncorrected 2.23 ±0.05 2.19 ±0.06
B Calibrated 2.22 ±0.04 2.18 ±0.06
B Final result 2.22 ±0.04 2.21 ±0.05
C Uncorrected 2.50 ±0.03 2.43 ±0.03
C Calibrated 2.50 ±0.03 2.43 ±0.03
C Final result 2.50 ±0.04 2.53 ±0.05

overexposures in these areas or force a reduction of the integration time. The reflecting object
is covered with black cloth for a second recording. Removing the object would change the
overall illumination of the scene and corrupt the measurement. The part of the frame without
the scattering source is then used to calculate s from Eq. (13). The image on the very right
of Fig. 3 shows the parameter s calculated for each pixel of the measurement area, averaged
over the different subframes. For this particular setup, the average value of the whole area and
standard deviation are s = 0.015±0.005.

There remains a very weak scene dependency of s, which might be due to an imperfection in
the calibration of the camera or residual light scattered from other parts of the room when the
scattering target is not covered. The measurement is repeated for several different arrangements
of the scene and the scattering parameter of the camera is found to be s = 0.017±0.002.

As the scattering parameter is an intrinsic camera parameter it, can be used for a scattering
correction of any scene recorded with the same camera. Only the calibration of the dark signal
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Fig. 4. 3D surface plots: depth data from the previous scene. Left column: without white
cylinder present. Right column: with white cylinder present. Surface maps from top to bot-
tom: depth from uncalibrated raw, depth from calibrated raw, depth from calibrated raw
with scattering correction. It is apparent, that the calibration process reduces the noise in
the data, while it does not affect the intensity related distance error. The scattering compen-
sation effectively removes the influence of the bright white cylinder in the foreground.
The results of the depth measurement are then qualitatively indistinguishable from the
scene without the cylinder. Furthermore, the scattering correction does not compromise
measurements without strong scattering sources. This means it can safely be applied to any
measurement without prior knowledge of the scene.
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Fig. 5. Color maps of phase shift and differences. a and b: calibrated data. c: difference of
b and a. d and e: scattering corrected data. f: difference of e and d. g: difference of d and a.
h: difference of e and b. i: difference of e and a. The average phase values of the outlined
areas can be found in Tab. 2. The images show clearly that the scattering effect is much
stronger in the dark parts of the frame. The depth differences here are greatly reduced with
the proposed scattering correction.
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Fig. 6. Color maps of intensities and phase shift of a different scene. The top row shows the
intensities of the raw data (left) after calibration (center) and scattering correction (right).
The intensity data after the calibration is very noisy because the pixels are not calibrated
against each other but only linearized. The bottom row shows the phase data after cali-
bration (left), after scattering correction (center) and the difference of both (right). The
average phase values of the outlined areas can be found in Tab. 3. The scattering effect is
much weaker here because of the smaller scattering object and the smaller depth difference.
But the effect becomes apparent again in the dark spots and also in the background.

should be repeated for each measurement due to its strong temperature dependency (cf. Sect. 2).
Figures 4, 5 and 6 show the depths calculated from corrected and uncorrected raw data of

different setups but with the scattering parameter obtained from the scheme above (cf. Fig. 3).
At first we focus on a region with almost constant depth in Fig. 4 (red frame) and analyze
surface plots of the area.

The plots show nicely the depth noise reduction introduced by the calibration step. However,
it does not affect the dependency of the depth values on the reflectivity in the scene with the
scattering object (cf. Fig. 4 right column). Only the scattering correction achieves this goal.

Figure 5 shows the calibrated and corrected depth maps of the whole scene in Fig. 4 and an
additional setup. It is apparent that with the added scattering object, the background surfaces
are measured closer to the camera compared to the setup without scattering. This is due to depth
difference of the scattering object and the rest of the scene. Once the depth difference is larger
than half the ambiguity range, the scattering will result in an increased background distance,
due to the mixing of the two complex signals.

The scattering has a severe influence on the darker areas and barely affects the bright parts.
This can be explained by the amount of scattered light which is equal for each pixel (cf. Eq. (5)),
while the unscattered light varies with the reflectivity and therefore is less dominant in dark



Table 3. Mean phase shift of the different measurements from the areas highlighted in
Fig. 6. The scattering is much weaker here and hard to evaluate quantitatively. Except for
the unreliable background data of area A, the mean values of the corrected data both with
and without scattering converge nicely.

Mean phase shift [rad] w/o Scat. Object Std. dev. w/ Scat. Object Std. dev.
A Uncorrected 2.87 ±0.90 2.78 ±0.91
A Calibrated 2.43 ±0.35 2.31 ±0.34
A Final result 2.84 ±0.66 3.10 ±0.66
B Uncorrected 2.086 ±0.036 2.078 ±0.037
B Calibrated 2.081 ±0.033 2.072 ±0.034
B Final result 2.083 ±0.035 2.082 ±0.036
C Uncorrected 1.911 ±0.009 1.909 ±0.013
C Calibrated 1.907 ±0.010 1.905 ±0.011
C Final result 1.907 ±0.012 1.908 ±0.009

areas. This becomes apparent in the difference images in Fig. 5.
The experiment shows the correction process to improve the depth measurement compared

to raw and intensity calibrated data. Its result has the same quality as the depth measured in a
setup without scattering object (Fig. 4 bottom left, Fig. 5e).

If we look at the difference of the corrected scene with and without the scattering object
(Fig. 5f), there are areas in the bottom left corner and next to the cylinder, where the scattering
correction overcompensates compared to the scene without a scattering object. Most likely the
in-scene scattering introduced by the scattering object is responsible for these effects.

In the areas right next to the scattering object in the scene with the cone (Fig. 6) a strong
local scattering effect can be observed, quite obvious in the difference image (Fig. 6 bottom
right). This is actually not a special local scattering effect, but it is due to the reduced intensity
where the cone occludes one of the light sources mounted left and right of the camera.

Notable is also the behavior of the background in all of the examples. The area around the
scenes has been covered with black cloth to avoid additional scattering effects from outside
the scene. The data obtained from these areas is usually very noisy and unreliable. But the
presented approach makes the measured values in these areas much more consistent.

To quantitatively evaluate the scattering correction, we compare the different depth values
averaged over the considered region to those of the setup without scattering (cf. Tab. 1,2,3).
Clearly, the effect of scattering is greatly reduced in the box scene. For the crop in Fig. 4,
the corrected depth value of −2.119 m differs to that of the measurement without scattering
(−2.122 m) only by 3 mm. Table 2 gives some additional examples from Fig. 5 that prove
how the phase shift of the different setups matches much better following the scattering cor-
rection. The standard deviations presented in the tables are not only due to noise, but also due
to non-uniform depth in the areas. In most of the samples, the deviation is reduced because
the amplitude or intensity error is reduced and the areas with different reflectivity behave more
uniform.

In the cone-setup (Tab. 3), the depth differences are very small, except for the background
area. The size of the scattering object is small, as is its distance to the background objects. Still,
the effect on the dark points is well visible in the color maps (cf. Fig. 6) and reduced by the
scattering correction.



Fig. 7. Example for scattering in a different camera (Bluetechnix Argos3D). Left: recorded
without scattering object in the foreground. Right: recorded with scattering object in the
foreground.

5. General applicability

Since our model is based on effects of the optical system, we believe it is applicable to most
cameras currently on the market. As an example for a different system with similar scattering
distortions, we considered the Bluetechnix Argos3D camera, which uses a different PMD sen-
sor, a wider lens and a different modulation frequency. The scattering errors are very similar to
the CamCube 3 (cf. Fig. 7). In the scene with the scattering object, the background, especially
the dark areas, appear closer to the camera than without it.

We want to point out that the access of the raw data is crucial for our approach and in general
for research in this area. Unfortunately, this access is not possible with the interfaces of most
cameras available on the market, such as the Argos 3D camera considered above. Consequently,
the model and our scattering correction can not be applied to such systems.

6. Conclusion

We have introduced a new model and a solution to in-camera light scattering for Time-of-Flight
depth cameras. To this end we considered a simple scattering model, which already provides a
sufficient correction for most applications. Previous publications used much more complicated
models, but at the same time lacked the computation on raw data. In our work this processing
of the raw data turned out to be crucial for an efficient and accurate scattering correction.

Future work will focus on extended models to meet the physical properties of the camera
even better. Another refinement of the model could be to incorporate vignetting. This should
increase the subjective influence of scattering sources at the frame borders. At the same time,
the scattering intensity will decrease slightly with increasing distance from the frame center.
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