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Abstract. We introduce and study Bregman functions as objectives for non-negative
sparse compressed sensing problems together with a related first-order iterative scheme
employing non-quadratic proximal terms. This scheme yields closed-form multiplicative
updates and handles constraints implicitly. Its analysis does not rely on global Lipschitz
continuity in contrast to established state-of-the-art gradient-based methods, hence it is
attractive for dealing with very large systems. Convergence and a O(k−1) rate are proved.
We also introduce an iterative two-step extension of the update scheme that accelerates
convergence. Comparative numerical experiments for non-negativity and box constraints
provide evidence for a O(k−2) rate and reveal competitive and also superior performance.

Key words: multiplicative algebraic reconstruction, compressed sensing, underdetermined
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1 Introduction

Overview. Since the advent of Compressed Sensing [8, 12] it is well-known that the sparsest
solution of an underdetermined system of equations can be found via `1-minimization under
adequate conditions. In many interesting applications the vector x∗ to be recovered is nonnegative
or even binary. Recent results [24, 17, 13, 21] show that under appropriate conditions, a sparse
nonnegative (or binary) solution is also the unique solution of

Ax = b, x ∈ X, (1)

with X = R
n
+ or X = [0, 1]n, and thus recovery reduces to a simpler feasibility problem. As

a consequence, this may lead to alternatives superior to `1-minimization since any objective
function subject to the constraints (1) can recover the sparse solution. On the other hand, (1)
becomes infeasible when noise is present, and we have to allow for a distance of Ax∗ to b.

In this paper we suggest and study the approach

x∗ = argminx∈Xf(x), f(x) := Bφ(Ax, b), (2)

with Bφ an appropriate Bregman distance induced by φ. In the case of the Euclidean distance
Bφ(x, y) = 1

2‖x−y‖
2
2 it is shown in [22] that recovery of nonnegative sparse solutions via nonneg-

ative least-squares is stable and outperforms `1-regularization when combined with thresholding.

? gratefully acknowledges support by the State Ministry of Baden-Württemberg for Sciences, Research
and the Arts.
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Other choices for Bφ can be more adequate, however, if the noise is non-Gaussian, like e.g. Poisson
noise in tomographic applications, or when the data b and the sensor matrix A are nonnegative.

For particular sparse (nonnegative) images and tomographic projection matrices A the Si-
multaneous Multiplicative Algebraic Reconstruction Technique (SMART) recently proved to be
quite efficient by returning meaningful solutions after few iterations [1]. It applies only to the
specific but important case of systems with nonnegative b and A. SMART has been invented
and re-invented several times in the field of medical imaging. Convergence was proved in [7].
For consistent projection equations (1), it returns the feasible point in {Ax = b, x ≥ 0} that
minimizes the cross-entropy distance KL(x, x0) to the initial vector x0. When all entries of x0

are all equal SMART converges to the maximizer of the Shannon entropy.
In a nutshell, past studies showed that SMART:

1. is adequate for ill-conditioned problems and huge problem sizes,
2. converges provably,
3. performs at each iteration only a single multiplication with A and A>, and
4. returns meaningful solution after few iterations.

Contribution and Organization. Motivated by the specific case of SMART (section 2.1),
we introduce in section 2.2 an iterative scheme for the general case (2) based on a linearized
objective and a related Bregman-based proximal term, that enables closed-form multiplicative
updates and handles the constraints implicitly. We prove convergence and the convergence rate
O(k−1) in section 2.3.

Our approach may be understood as a blend of (i) optimal gradient-based schemes based on
a linearized objective and upper bound surrogates through quadratic proximation, and (ii) fully
nonlinear Bregman-based proximal iterations studied in [14]. While each step of the latter scheme
is as costly as the original objective, the former schemes depend on the Lipschitz constant of
the gradient of the objective that can be very large in large-scale nonnegative problems like 3D
algebraic tomography. Our approach and the analyis do not require global Lipschitz continuity.

In section 2.4 we specifically consider Bregman distances induced by the Shannon entropy
and by the Fermi-Dirac entropy and the corresponding multiplicative updates, to deal with
nonnegativity or box constraints. Connections of the resulting objectives to nonnegative least-
squares and `1-regression, that substantiate our approach more formally, are outlined in section
2.5.

While proving a O(k−2) convergence rate is beyond the scope of the present conference con-
tribution, we suggest two algorithmic extensions called F(AST)-SMART in section 3, aking to a
Bregman-based versions of established first-order optimal schemes [20, 5]. Competitive numerical
experiments discussed in section 4 illustrate the discussion above and support our claims.
Notation. We set [n] = {1, . . . , n} for n ∈ N. 〈·, ·〉 denotes the Euclidean inner product and
‖ · ‖ = ‖ · ‖2 = 〈·, ·〉1/2 the corresponding norm. 1 = (1, . . . , 1)>, that is ‖x‖1 = 〈1, x〉 for
x ∈ Rn+. Vectors are enumerated with superscripts xi, and vector and matrix components with
subscripts xi, Aij , while matrix rows and columns we denote by Ai,• and A•,j respectively. Vector
inequalities x ≥ y and log x, expx etc., are understood component-wise. By x+ we denote 1>x.
∆n = {x ≥ 0: ‖x‖1 = 1} ⊂ R

n
+ denotes the probability simplex. KL(x, y) denotes the Kullback-

Leibler distance of two nonnegative vectors, see Appendix.

2 B-SMART

2.1 Motivation: The SMART Iteration

It is well known [7] that the Simultaneous Multiplicative Algebraic Reconstruction Technique
(SMART) minimizes f(x) = KL(Ax, b) over the positive orthant, provided that A ≥ 0, (A•,j)+ >



B-SMART 3

0, j ∈ [n] and b > 0. This corresponds to (2) with ϕ being the negative entropy (21). For a positive
iterate xk ∈ Rn++ the SMART iteration reads

xk+1
j = xkj

m∏
i=1

(
bi

〈Ai,•, xk〉

)tkAij

, j ∈ [n]. (3)

Here tk is a relaxation parameter, with tk ≤ minj{(A•,j)+}. We observe that algorithm (3)
employs at each step the minimization of the linearized objective f plus a ”prox”-like term of
the form

xk+1 = argminx∈Rn
+
f(xk) +∇f(xk)>(x− xk) +

1

tk
KL(x, xk), (4)

with arbitrary starting vector x0 > 0. This implies

log(xk+1) = log xk − tkA>(logAxk − log b), (5)

since for every xk > 0, xk+1 > 0 holds as well. This is exactly the SMART iteration with
relaxation parameter tk.

Remark 1. We note that the above algorithm (4) is closely related to the gradient descent method

xk+1 = argminxf(xk) +∇f(xk)>(x− xk) +
1

2tk
‖x− xk‖2, (6)

better known as xk+1 = xk− tk∇f(xk). For convex LC1 functions there exist precise bounds for
the value of tk depending on the Lipschitz constant of the gradient of f . Moreover, convergence
rates are well understood and optimal gradient methods have been established [18, 5, 19, 23]. Our
objective function f however is only locally Lipschitz-continuous, due to differentiability, and
non-differentiable on the boundary of Rn+, where sparse solutions occur.

2.2 A Nonlinear Projected Gradient Method

In this section we derive convergence rates for the iteration (4) by considering a general mini-
mization scheme for problems of the form (2).

Let ϕ : X → R and φ : Y → R be convex and continuously differentiable on int(X) and int(Y )
respectively, with A(X) ⊂ Y . Further define the distance-like functions Bϕ : X × int(X) → R

and Bφ : Y × int(Y )→ R by

Bϕ(x, y) = ϕ(x)− ϕ(y)− 〈x− y,∇ϕ(y)〉 (7)

and
Bφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉. (8)

We assume A(X) ⊂ Y and b ∈ int(Y ), and define f : X → R by

f(x) = Bφ(Ax, b). (9)

Choosing an appropriate constant c > 0, we apply with ∇xBφ(Ax, b) = A>(∇φ(Ax) − ∇φ(b))
the iteration

xk+1 = argminx∈Xf(xk) + 〈∇f(xk), x− xk〉+
c

tk
Bϕ(x, xk) (10)

= argminx∈Xf(xk) + 〈∇φ(Axk)−∇φ(b), Ax−Axk〉+
c

tk
Bϕ(x, xk). (11)

We will see that under an appropriate assumption the r.h.s. of (10) is an upper bound of f .
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2.3 Convergence and Convergence Rates

Iteration (10) is exactly the nonlinear projected gradient method from [4], except for the fact that
due to the particular form of the objective function, only relaxed conditions of f are required.
In fact, we can replace the Lipschitz-condition in [4] by Assumption A, part (b), below.

Assumption A:

(a) X is a closed and convex set with nonempty interior;

(b) We have Bφ(Ax,Ay) ≤ cBϕ(x, y) for all x, y ∈ X;

(c) The set of optimal solutions X∗ := argminx∈Xf(x) is nonempty.

The following results will turn out to be useful in the sequel.

Lemma 1 ([10, Lem 3.1]). Let S ⊂ R
n be an open set with closure S, and let ψ : S → R

be continuously differentiable on S. Then for any three points a, b ∈ S and c ∈ S the following
identity holds

Bψ(c, a) +Bψ(a, b)−Bψ(c, b) = 〈∇ψ(b)−∇ψ(a), c− a〉.

Theorem 1 ([3, Thm. 3.12]). Suppose ϕ is closed proper convex and differentiable on int(domϕ),
X is closed convex with X∩ int(domϕ) 6= ∅, and y ∈ int(domϕ). If ϕ is Legendre, then the Breg-
man projection x of y is unique and contained in int(domϕ),

argmin
x∈X∩domϕ

Bϕ(x, y) = {x}, x ∈ int(domϕ). (12)

Remark 2. It is easy to see that assertion (12) also holds for the case

argmin
x∈X∩domϕ

{
Bϕ(x, y) + 〈l, x〉

}
= {z}, z ∈ int(domϕ), (13)

with l ∈ Rn arbitrary and ‖l‖ ≤ ∞.

Our main result is stated next.

Theorem 2. Under Assumption A above, for the sequence {xk}k≤κ generated by (10) with
starting point x0 ∈ int(X) and tk = t ≤ 1, one has:

(a) Iteration (10) is well defined.

(b) For every κ,

min
0≤k≤κ

f(xk)−min
X

f(x) ≤ cBϕ(x∗, x0)

tκ
. (14)

(c) The sequence {f(xk)}k≤κ is decreasing. In particular, the method converges.

Proof. Statement (a) follows by Remark 2.
(b) Let x∗ be the optimal solution. The optimality conditions for (10) imply

〈x− xk+1, tk∇f(xk) + c
(
∇ϕ(xk+1)−∇ϕ(xk)

)
〉 ≥ 0, x ∈ X.

In particular, for x = x∗ we get

〈x∗ − xk+1, c
(
∇ϕ(xk)−∇ϕ(xk+1)

)
− tk∇f(xk)〉 ≤ 0, x ∈ X. (15)
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Since f is convex

0 ≤ tk(f(xk)− f(x∗)) ≤ tk〈xk − x∗,∇f(xk)〉 (16)

= 〈x∗ − xk+1, c
(
∇ϕ(xk)−∇ϕ(xk+1)

)
− tk∇f(xk)〉 (17)

+ c〈x∗ − xk+1,∇ϕ(xk+1)−∇ϕ(xk)〉+ 〈xk − xk+1, tk∇f(xk)〉 (18)

:= s1 + cs2 + s3. (19)

By equation (15) s1 ≤ 0 holds, and by Lemma 1 we have

s2 := 〈x∗ − xk+1,∇ϕ(xk+1)−∇ϕ(xk)〉 = Bϕ(x∗, xk)−Bϕ(x∗, xk+1)−Bϕ(xk+1, xk).

Furthermore

s3 = 〈xk − xk+1, tk∇f(xk)〉 = tk〈∇φ(Axk)−∇φ(b), Axk −Axk+1〉
Lem. 1

= tk(Bφ(Axk+1, Axk) +Bφ(Axk, b)−Bφ(Axk+1, b)).

Summarizing

tk(f(xk)− f(x∗)) ≤ cBϕ(x∗, xk)− cBϕ(x∗, xk+1)

+ tkBφ(Axk+1, Axk)− cBϕ(xk+1, xk)︸ ︷︷ ︸
≤0,Ass.(b)

+ tkBφ(Axk, b)︸ ︷︷ ︸
=tkf(xk)

−tkBφ(Axk+1, b)) ,

gives
tk(f(xk+1)− f(x∗)) ≤ cBϕ(x∗, xk)− cBϕ(x∗, xk+1).

Summing over k yields

min
0≤k≤κ

f(xk+1)− f(x∗) ≤ cBϕ(x∗, x0)− cBϕ(x∗, xκ+1)

t(κ+ 1)
≤ cBϕ(x∗, x0)

t(κ+ 1)
.

(c) By Lemma 1 we have

〈∇φ(Axk)−∇φ(b), Ax−Axk〉 = Bφ(Ax, b)−Bφ(Ax,Axk)−Bφ(Axk, b)

= f(x)− f(xk)−Bφ(Ax,Axk) .

Thus
xk+1 = argminx∈Xf(x) +

c

tk
Bϕ(x, xk)−Bφ(Ax,Axk)︸ ︷︷ ︸

:=fk(x)

, (20)

where fk(x) ≥ 0 due to Assumption A., part (b) and fk(xk) = 0. Consequently, algorithm (10)
minimizes an upper bound on f , in analogy to the classical gradient method. Now,

f(xk+1) + fk(xk+1) ≤ f(xk) + fk(xk) = f(xk)

follows and
f(xk)− f(xk+1) ≥ fk(xk+1) ≥ 0 .

Hence, the sequence {f(xk)}k is decreasing and bounded from below by 0. Statement (c) then
follows by standard arguments. ut



6 B-SMART

2.4 Application: Multiplicative Updates

It is well-known that multiplicative updates as e.g. employed by the exponential gradient method
[4, 15], typically lead to faster convergence if the solution x∗ of the optimization problem is sparse.
As discussed in Section 2.1 the choice

ϕ1(x) = 〈x, log x〉, x ∈ Rn+ (21)

and φ1(x) = 〈x, log(x)〉, x ∈ R
m
+ , leads to the update rule (3) of SMART, since Bϕ1

(x, y) =
KL(x, y) and f(x) = Bφ1(Ax, b) = KL(Ax, y). For this particular choice we obtain c1 = 1, for
matrices A with columns that sum up to one, compare Appendix, Prop. 2.

To include an upper bound on feasible points x, often known in applications (e.g. x ∈ [0, 1]n),
we additionally consider the generalization of the Fermi-Dirac entropy

ϕ2(x) = 〈x− l, log(x− l)〉+ 〈u− x, log(u− x)〉, x ∈ X = [l, u], l < u. (22)

A simple computation shows Bϕ2
(x, y) = KL(x − l, y − l) + KL(u − x, u − y). With Bϕ2

and
f(x) = Bφ2

(x, y) = KL(Ax, b), we obtain again c2 = 1, compare Appendix, Prop. 3. This choice
leads to the following algorithm that we call bounded-SMART

(xk+1 − l)j
(u− xk+1)j

=
(xk − l)j
(u− xk)j

m∏
i=1

(
bi

〈Ai,•, xk〉

)tkAij

. (23)

Proposition 1 below provides convergence rates for the multiplicative updates (3) and (23).
The proof of the following preparatory Lemma is given in the Appendix.

Lemma 2. For a minimizer x∗ ∈ X∗ and some arbitrary starting point x0 ∈ intX with x0min :=
mini∈[n] x

0
i , we have

Bϕi(x
∗, x0) ≤


R(logR− log x0min − 1) + ‖x0‖1, i = 1, X = R

n
+

log n, i = 1, X = ∆n

2R(R− log x0min), i = 2, X = [l, u]

(24)

for some sufficiently large R > 0 such that ‖x∗‖1 ≤ R. In the case of ϕ = ϕ2 and X = [l, u], we
have R = ‖u− l‖1.

Proposition 1. Algorithms (3) and (23) converge for tk = 1 with rate

min
0≤k≤κ

f(xk)− f(x∗) ≤ c(R)

κ
,

with c(R) given by (24), for any x0 ∈ intX and all κ ≥ 0.

Proof. Propositions 2 and 3 in the Appendix establish c = 1 in both cases, in the context
of Assumption A, part (b). Parameter tk can be fixed to 1. Together with parts (a) and (c),
Theorem 2 then yields the assertion. ut

2.5 B-SMART: An Alternative to Nonnegative Least Squares and `1–Regression

We briefly relate our approach to the more established objective functions

min
x≥0
‖Ax− b‖2 and min

x≥0
‖Ax− b‖1. (25)
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The nonnegative least-squares approach on the l.h.s. corresponds to the special case ϕ3(x) =
φ3(x) = 1

2‖x‖
2, cf. (7), (8). Iteration (10) reads (up to a constant)

xk+1 = argminx∈X 〈Axk − b, A(x− xk)〉+ c‖x− xk‖2, (26)

with c = ‖A‖22 = λmax(A>A) for Assumption A, part (b), to hold. While directly tackling the
normal equations corresponding to the l.h.s. of (25) is known to be ill-conditioned, the surrogate
(right-most term) in (26) provides only a poor approximation of the objective. The large weight
c entails only small steps, in addition to the need to take non-smooth projections onto X into
account. By contrast, c = 1 suffices for both cases (21) and (22), and the feasible set X is taken
implicitly into account by closed-form iterative updates.

Adopting a probabilistic viewpoint, non-negative least-squares may be critized because
the residuals (Ax − b)2i do not follow a Gaussian distribution. Rather than rectifying this for
specific applications (e.g. by a Poisson model in connection with tomography), our approach is
additionally motivated by recent results of compressed sensing for non-negative sensing matrices,
corresponding to sparse expander graphs with constant column sums (cf., e.g., [6]): 1>A =
d1, d > 0. As a consequence, we have ‖d−1Ax‖1 = ‖x‖1 = ‖b‖1 for consistent systems Ax = b,
that is x, b ∈ ∆n, up to a common scale factor. This suggests to adopt the distance KL(Ax, b) in
the inconsistent case (noisy measurements b), that is more natural for comparing points in the
simplex ∆n. Applying Jensen’s inequality, we then get

KL(Ax, b) ≤ log
(∑

i

(Ax)2i
bi

)
= log

(∑
i

(Ax)2i
bi

+ ‖b‖1 − 2‖Ax‖1 + 1︸ ︷︷ ︸
=0

)

= log
(∑

i

(Ax− b)2i
bi

+ 1
)

= log
(

1 +
〈
Ax− b,Diag(b)−1(Ax− b)

〉)
.

(27)

This relates in view of non-negative least-squares our objective to (the logarithm of) a scaled
squared Euclidean objective, which is known as the χ2-distance that provides a first-order ex-
pansion of the KL-distance at b [11].

The `1-regression objective in (25), suggested e.g. by [9], may be considered as total
variation distance dTV(Ax, b) =

∑
i |(Ax− b)i|, again from the viewpoint of discrete probability

distributions. Our objective upper-bounds this distance, 1
2KL ≥ d2TV, as shown in [16], hence

minimizes the total variation as well. On the other hand, unlike the residuals (Ax−b)i are known
to be sparse (cf. [9]) (rather than x), considering the KL distance seems more appropriate.

Summing up, there are good reasons to consider and study (2) as objective for a range of
non-negative compressed sensing scenarios.

3 F-SMART: Towards an Optimal Nonlinear Proj. Gradient Method

Above we showed that SMART and its bounded version converge with rate O(k−1). We believe
that it should be possible to design an “optimal” entropic gradient method in the sense of [20]
with rate O(k−2). An elaboration is beyond the scope of the present conference contribution. We
therefore confine ourselves to specifying below the algorithm and to providing empirical evidence
supporting our conjecture in Section 4.

Similar to Alg. 1 in [23], we suggest the following iteration called F(ast)-SMART 1,

yk = (1− θk)xk + θkz
k (28a)

zk+1 = argminx∈X〈∇f(yk), x− yk〉+ c θkBϕ(x, zk) (28b)

xk+1 = (1− θk)xk + θkz
k+1, (28c)
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where x0 = z0 ∈ int(domϕ) and θk ∈ (0, 1] satisfies

1− θk+1

θ2k+1

≤ 1

θ2k
. (29)

Additionally, similar to FISTA [5], we suggest the following scheme called F(ast)-SMART 2,

xk = argminx∈XBϕ(x, yk−1) + 〈∇f(yk−1), x− yk−1〉 (30a)

vk = ΠX

(
xk−1 +

1

θk
(xk − xk−1)

)
(30b)

yk = (1− θk+1)xk + θk+1v
k, (30c)

where x0 = y0 = v0 ∈ int(domϕ) and θk satisfies again (29).
Numerical evidence for convergence and the rate of both F-SMART variants is provided in

the next section.

4 Experiments and Discussion

In this section we illustrate the performance of BSMART (10) compared to FISTA [5]. BS-
MART includes the SMART scheme for ϕ1(x) (21) and b(ounded)-SMART for ϕ2(x) (22)
as special cases. In the following SMART (3), FSMART1 (28) and FSMART2 (30) will min-
imize f(x) = KL(Ax, b) over X = Rn+, while b(ounded)-SMART, b(ounded)-FSMART1 and
b(ounded)-FSMART2 minimizes f(x) = KL(Ax, b) over X = [0, 1]n. Cf. the discussion of
Eq. (27), FISTA will be applied to f(x) = 0.5‖Ax−b‖2 and f(x) = 0.5〈Ax−b,Diag(b)−1(Ax−b)〉
subject to both X = R

n
+ and X = [0, 1]n. Matrix A will be scaled so that the every column sums

up to one.

Fig. 1. The first test image consists of 15 particles at random positions (left). Comparison of function
value errors f(xk)− f(x∗) for all algorithms (middle). While BSMART is competitive, the relative error
decays faster for FSMART1 and FSMART1 (right).

Test Case 1: Here we consider an infeasible ill-conditioned problem inspired by a real-world
application [1]. The original sparse image I, see Fig. 1 left, consists of 15 Gaussian blobs (particles)
at random positions in a square. The measurement vector b ∈ R200 is computed by integrating the
particle image exactly along 50× 4 lines arranged in 4 fan beams (angles 45o, 15o,−15o,−45o).
Image I is discretized in 66×66 Gaussian basis functions positioned on a regular grid. The matrix
entries Aij equal the line integral of every basis function along every line, thus A ∈ R200×4356

and A ≥ 0. After scaling 1
>A = 1, and Lχ2 = 1004.8, LNNLS ≈ 53.6. We underline that

no nonnegative solution exists which satisfies the constraints Ax = b. Additionally we added
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NNLS χ2 SMART FSMART1 FSMART2

Fig. 2. Reconstructions of 15 particles at random positions at iteration 100 (top row) and at the final
iteration (bottom row). The reconstruction is accurate after a (significantly) smaller number of iterations
in the case of the KL objective that copes better with an ill-conditioned matrix A.

uniform (non-Gaussian) noise to b. The parameters for FISTA, FSMART1 and FSMART2 are

chosen as θk = 1, θk+1 = 0.5(
√
θ4k+1 + 4θ2k+1 − θ2k+1) and satisfy (29), according to [23]. The

function value at iteration k of all algorithms is depicted in Fig. 1. The function value for FS-
MART2 is lower than for FISTA, which is explained by the high values of Lχ2 and LNNLS.
The decay of f(xk) − f(x∗) for both FSMART1 and FSMART2 suggests a O(k−2) rate, con-
sistently with FISTA, see Fig. 1, middle. The solutions x∗ for the three problems considered,
minx∈Rn

+
KL(Ax, b), minx∈Rn

+
0.5〈Ax− b,Diag(b)−1(Ax− b)〉 and minx∈Rn

+
0.5‖Ax− b‖2, are not

known, but we computed an accurate solution via an interior point solver for the KKT conditions.
Iteration 100 and the final one are described in Fig. 2. The reconstructions produced by SMART,
FSMART1 and FSMART2 are of better quality even if only few iterations are performed.

These preliminary computational results indicate that BSMART is sometimes even faster
then the proven predicted theoretical rate and FSMART is a promising extension with a high
potential for designing fast algorithms for nonnegative data.

Fig. 3. Original 256 × 256 binary test image from [2] (left). Comparison of function values for all algo-
rithms and X = [0, 1]n (right). Again FSMART1 and FSMART2 exhibit an O(k−2) rate.

Test Case 2: The second 256× 256 test image [2] is a vascular system containing larger and
smaller vessels, see Fig. 3 (left). We consider 20 projecting directions, although the uncorrupted
image binary image is determined by 18 projections and is unique in [0, 1]n. Here A ∈ R7240×65536,
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Lχ2 = 5.0948, LNNLS = 12.2308 and X = [0, 1]n. Thus A is better conditioned than the previous
one. To vector b we add again 5% uniform (nongaussian) noise. This results in an infeasible
problem. Due to the low Lipschitz constant Lχ2 we expect a similar behavior of FISTA and
FSMART, which is exactly what happens, see Fig. 3 (right) for the decrease of the function
values.

Adding the additional information that the image entries are in [0, 1]n leads to a fairly good
reconstruction in Fig. 4 within the first iterations. This can be improved by thresholding.

NNLS χ2 SMART FSMART1 FSMART2

Fig. 4. Reconstructions after 50 iterations (top row) and after 100 iterations (middle row). By replacing
at iteration 100 all values above a globally determined threshold with one and the others with zero, we
obtain similar results for all algorithms with slightly better and faster reconstructions for FSMART and
FISTA.

5 Conclusion and Further Work

This paper advocates Bregman functions as objectives for constrained nonnegative compressed
sensing problems, together with a corresponding non-quadratic proximation scheme that only
requires first-order gradient evaluations of the objective. The attractive properties of this ap-
proach concerning both mathematical and algorithmic aspects deserve further study. Our future
work therefore will take a closer look on the pros and cons in connection with other established
objectives in the field of compressed sensing, as initiated in section 2.5. Furthermore, in view of
established optimal first-order methods with O(k−2) convergence rate, we will study from a more
general mathematical viewpoint surrogate objectives based on non-quadratic proximation that
lead to efficient two-step iterations with multiplicative updates, with a focus on the resulting
convergence rates.
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Appendix

Properties of the Kullback-Leibler distance. For positive scalars a, b, define KL(a, b) =
a log(a/b) + b − a, KL(0, b) = b and KL(a, 0) = +∞. The Kullback-Leibler distance can be
extended to nonnegative vectors

KL(x, y) :=

n∑
j=1

(
xj log

(
xj
yj

)
+ yj − xi

)
. (31)

It is well known that for all x, y ≥ 0, we have KL(x, y) ≥ 0 and KL(x, y) = 0 iff x = y.
Furthermore, by Jensen’s inequality, we have (see, e.g., [11, Thm. 2.7.1])

n∑
i=1

xi log
xi
yi
≥
( n∑
i=1

xi

)
log

∑n
i=1 xi∑n
i=1 yi

, ∀x, y ∈ Rn+. (32)

Proposition 2. For A ≥ 0 with 1>A = 1>, we have

KL(Ax,Ay) ≤ KL(x, y), ∀x, y ∈ Rn+. (33)

Proof. We compute

KL(x, y) =

n∑
j=1

(
xj log

xj
yj

+ yj − xi
)

=

n∑
j=1

m∑
i=1

Aij︸ ︷︷ ︸
=1

(
xj log

xj
yj

+ yj − xi
)

=

m∑
i=1

( n∑
j=1

Aijxj log
Aijxj
Aijyj

+

n∑
j=1

Aijyj −
n∑
j=1

Aijxj

)
Eq. (32)

≥
m∑
i=1

[( n∑
j=1

Aijxj

)
log

∑n
j=1Aijxj∑n
j=1Aijyj

+

n∑
j=1

Aijyj −
n∑
j=1

Aijxj

]
= KL(Ax,Ay).

Lemma 3. For any x, y ≥ 0, with x ≥ t and y ≥ t, we have KL(x− t, y − t) ≥ KL(x, y).

Proof. Let g(t) = KL(x− t, x− t). Then g′(t) = x−t
y−t − 1− log

(
x−t
y−t

)
≥ 0 . Thus g(t) ≥ g(0).

This immediately implies

Proposition 3. For A ≥ 0 with 1>A = 1> and x, y ∈ [l, u], we have

KL(Ax,Ay) ≤ KL(Ax−Al,Ay −Al) +KL(Au−Ax,Au−Ay) (34)

≤ KL(x− l, y − l) +KL(u− x, u− y) . (35)

Proof of Lemma 2

Proof. In the case X = R
n
+, we may assume ‖x‖1 ≤ R for some sufficiently large R > 0, due to

Assumption A, part (c). Hence

Bϕ1
(x∗, x0) =

∑
i

(
x∗i log

x∗i
x0i

+ x0i − x∗i
)

= ‖x∗‖1
∑
i

x∗i
‖x∗‖1

log
x∗i
x0i

+
∑
i

(x0i − x∗i )

= ‖x∗‖1
∑
i

x∗i
‖x∗‖1

(
log

x∗i
‖x∗‖1

+ log ‖x∗‖1 − log x0min

)
+
∑
i

(x0i − x∗i )

≤ ‖x∗‖1(log ‖x∗‖1 − log x0min − 1) + ‖x0‖1 ≤ R(logR− log x0min − 1) + ‖x0‖1
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In the case X = ∆n, we have R = 1 and may choose x0 = n−11. In the case X = [l, u], the last
two summands in (31) cancel. A similar computation then yields

Bϕ2(x∗, x0) ≤ ‖x∗ − l‖1(log ‖x∗ − l‖1 − log x0min) + ‖u− x∗‖1(log ‖u− x∗‖1 − log x0min)

≤ 2‖u− l‖1(log ‖u− l‖1 − log x0min).

ut
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