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Abstract In this paper, for imaging applications, we
introduce partial differential equations (PDEs), which

allow for correcting displacement errors, for dejitter-

ing, and for deinterlacing, respectively, in multi-channel
data. These equations are derived via semi-groups for

non–convex energy functionals. As a particular exam-

ple, for gray valued data, we find the mean curvature
equation and the corresponding non–convex energy func-

tional. As a further application for correction of dis-

placement errors we study image interpolation, in par-

ticular zooming, of digital color images. For actual im-
age zooming, the solutions of the proposed PDEs are

projected onto a space of functions satisfying interpola-

tion constraints. A comparison of the test results with
standard and state-of-the-art interpolation algorithms

shows the competitiveness of this approach.
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1 Introduction

In this paper, for imaging applications, we consider the

partial differential equations proposed in [27] for cor-
recting displacement errors in multi-channel data, such

as for instance color images. In comparison with [27] we

study these PDEs in a more general context and also in
view of additional applications such as dejittering and

deinterlacing. In addition a novel PDE for dejittering

is proposed.

Our work is motivated by the following image ac-
quisition model: data u(0) of some u are given, which

are obtained by a (random) displacement perturbation.

That is u(0) and u satisfy

u(0) = u ◦ Φ , (1)

where Φ : Ω → Ω is a displacement vector field.

For filtering such data u(0) novel variational meth-

ods and partial differential equations (PDEs) are de-
rived and numerically studied. We show that for the

partial equations the according displacement field Φ

evolves according to the optical flow. Similar model-

ing assumptions are used for modeling interlaced and
jittered data.

The second objective is to apply the partial differ-

ential equations for image interpolation, which we refer
to as the process of assigning a discrete set of pixel po-

sitions and according discrete multi-channel image data

an interpolating function. Interpolation is frequently
used for zooming into or scaling digital images. A spe-

cial kind of image interpolation problems is inpaint-

ing, i.e., the problem of reconstructing lost or corrupted

parts of images.
Linear interpolation (that is convolution methods)

[33], such as for example nearest neighbor, spline, Whit-

taker-Shannon and the Lanczos interpolation [22,6,41],
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is computationally efficient but produce unpleasant ar-

tifacts. On the other hand, nonlinear methods adapting
to geometrical structures can produce more visually at-

tractive results but are computationally more demand-

ing. Nowadays, most of these nonlinear methods are
motivated by energy minimization or by scale spaces of

partial differential equations, see for example [3,44,42,

33]. In particular for inpainting such nonlinear methods
are widely used, see for example [4,8,9,46].

In this paper we derive partial differential equations

that are designed to correct and filter for displacement

errors in multi-channel data. When combined with the
interpolation ideas of [18,28], these PDEs are very well

suited for image interpolation. In Section 7 we com-

pare results of the proposed methods with interpola-
tion methods from the scale space literature. In par-

ticular we take into account the GREYCstoration soft-

ware of Tschumperlé [42] and the interpolation method
proposed by Roussos & Maragos [33,34].

The paper is organized as follows: In Section 2 we

present the connection between optical flow and dis-

placement errors. In Section 3 we consider a variational
ansatz for correcting displacement errors. Application

of the semi-group concepts (see Section 4) yields PDEs,

which can be considered the gradient flows of the vari-
ational problems. Moreover, a relationship of our PDEs

to the Mean Curvature Flow (MCF) equation is estab-

lished. In particular we derive a generalization of the
MCF to vector valued functions, which differs from the

model proposed in [7].

Section 5 clarifies the relation of the partial differen-

tial equations to optical flow displacement. The applica-
tion of the proposed PDEs to dejittering, deinterlacing

and image interpolation is described in Section 6. Nu-

merical tests for image zooming are shown in Section
7. The paper ends with a conclusion in Section 8.

2 Displacement Errors and the Optical Flow

Problem

Let u : Ω → R
M be an multi-channel function rep-

resenting continuous multi-channel data on a bounded

open domain Ω ⊆ R
n.

In the following we assume that u is a smooth func-

tion, so that we can make a first order Taylor series
expansion. Then it follows from our modeling assump-

tions that

u(0)(x) = (u ◦ Φ)(x) = u(x + (Φ(x) − x))

≈ u(x) + ∇uT (x) (Φ(x) − x) .
(2)

Here

∇u =

(
∂1u1 ∂1u2 ∂1u3

∂2u1 ∂2u2 ∂2u3

)

,

and ≈ symbolizes that the left hand side of (2) ap-

proximates the right hand side for small displacements
Φ− Id. In the following we assume that equality holds

instead of ≈, which implicitly implies that only small

displacements are relevant.

Remark 1 We emphasize that in the case of scalar data
(that is, for M = 1) (2) approximates the standard

optical flow equation:

∂u

∂t
(x, t) + (∇u)T (x, t)(Φ(x, t) − x) = 0 . (3)

The relation is immediate if one considers Φ − Id the

optical flow and u−u(0) is considered a time discretiza-

tion of a time dependent function u(t).

Equation (2) shows a different behavior for scalar val-
ued functions and multi-channel data. In the scalar

case the system is underdetermined, and aside at posi-

tions, where ∇u degenerates, solvable. For Ω = R
d and

M > d the system is overdetermined, in which case it

is necessary to consider minimizers of the least squares

problem, to minimize the functional
∣
∣
∣∇uT (x)(Φ(x) − x) − u(0)(x) + u(x)

∣
∣
∣

2

, (4)

instead. A minimizer of (4) is given by

Φ(x) − x = (∇uT (x))†(u(0)(x) − u(x)), (5)

where (∇uT (x))† denotes the Moore–Penrose pseudo–
inverse (see [29]) of ∇uT (x). The above ansatz, to use

the pseudo–inverse to estimate a displacement Φ from

a given pair of images, provides already a simplistic so-

lution to the optical flow problem (see Figure 1). How-
ever, this approach is only capable to capture small

displacement and very sensitive to noise.

3 Displacement Regularization

In what follows, we consider the problem of finding the

pairs (u,Φ) of minimal energy satisfying (1). For solv-
ing this problem approximately, we use a variational

method consisting in minimization of the functional

(with small positive α)

1

2

∫

Ω

|Φ(x) − x|
2

dx + α

∫

Ω

|∇u(x)| dx (6)

over the set of functions satisfying u(0) = u ◦ Φ. Here

|∇u(x)| =





M∑

j=1

2∑

i=1

(∂iuj(x))2





1/2

.

The regularization used in (6) differs from standard

regularization techniques for the optical flow problem,
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Fig. 1 Test example for computing displacements via pseudo–inverse. Top left: Test image with four objects. Top right: image with
shifted objects. The top objects are shifted to the right by one and two pixels, respectively. The bottom objects are shifted diagonally

with a displacement of length
√

2 and
√

8. Bottom: displacement calculated using the Moore–Penrose pseudo–inverse, see (5).

see e.g. [1,14,32,30], which use a fidelity term depend-

ing on u and data u(0), and a regularization term de-
pending on Φ or its derivatives. In (6) the magnitude

of the displacement as well as the regularity of u are

considered.

In the following, for notational convenience, we leave

out the space dependency and write u instead of u(x).
Inserting (5) into (6) gives the functional

F0
u(0)(u)

:=
1

2

∫

Ω

(u − u(0))T ((∇u)T∇u)†(u − u(0))

+ α |∇u| dx .

(7)

In order to avoid computation of the pseudo–inverse,

we additionally regularize the probably singular matrix
(∇u)T∇u by the regular, symmetric, and strictly pos-

itive definite matrix (εI + (∇u)T∇u) with some ε > 0.

Therefore, in the sequel, we consider minimizing of the

regularized functional

Fε
u(0)(u)

:=
1

2

∫

Ω

(u − u(0))T (εI + (∇u)T∇u)−1(u − u(0))

+ α |∇u| dx .

(8)

For this functional, the existence theory within the clas-

sical framework of the Calculus of Variations [10,11]
is not applicable. In addition, for a theoretical analy-

sis a further complication is due to the fact that mini-

mization has to be considered over the space of multi-

channel functions with components of finite total vari-
ation. In order to implement the minimization of Fε

u(0)

numerically, quasi-convexification techniques would be

most efficient. This approach requires the analytical cal-
culation of the quasi-convex envelope of the function

(x, ξ, ν) →
1

2
(ξ − v(x))T (εI + νT ν)−1(ξ − v(x)) + α |ν|
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with respect to ν. However, for M > 1 or n > 1, the

quasi-convex envelope function is not known so far, and
thus efficient numerical minimization based on this ap-

proach is not at hand. For M = 1 and for n = 1 the

quasi-convexification equals the convexification and can
be calculated analytically.

In the case of gray valued data, from a practical

point of view, we emphasize that efficient numerical
methods for the solution of the mean curvature equa-

tion can be performed with morphological image filter-

ing techniques, such as the median [19].

4 Semi-Group Solution Concept

In the following we recall the convex semi-group solu-

tion concept [5]: Let R : H → R ∪ {∞} be a convex

functional on a Hilbert space H, and let uα be a mini-
mizer of the variational regularization functional

Gu(0)(u) :=
1

2

∥
∥
∥u − u(0)

∥
∥
∥

2

H
+ αR(u) .

Then, for a smooth initial function u(0) and α → 0,

(uα − u(0))/α converges to an element of the subgra-

dient ∂R(u(0)) of R. Choosing u(k) ∈ argminGu(k−1) ,
iterative minimization of Gu(k) yields an approximation

of the solution of the flow

∂tu ∈ ∂R(u) at scale t = kα .

In other words, variational regularization approximates

a diffusion filtering scale space, which is the associated
gradient flow equation. For convex semi-groups the so-

lutions of diffusion filtering and variational methods are

comparable and look rather similar [36].

We expect a similar behavior for the non-convex
functional Fε

u(0) and derive the according flow equation,

which is the gradient flow associated with (8). We use

the abbreviations

Aε(u) :=
(
εI + (∇u)T∇u

)−1
,

and

Sε
(k−1)(u) :=

1

2

∫

Ω

(u − u(k−1))T Aε(u)(u − u(k−1)) dx .

The directional derivative of Sε
(k−1) at u in direction φ

(provided it exists) satisfies

∂τSε
(k−1)(u + τφ)

=

∫

Ω

φT Aε(u)(u − u(k−1)) dx

+
1

2

∫

Ω

(u − u(k−1))T ∂φAε(u) (u − u(k−1)) dx ,

(9)

where

∂φAε(u) := lim
τ→0

Aε(u + τφ) − Aε(u)

τ
.

In a similar, formal manner, the directional derivative

of R(u) =
∫

Ω
|∇u| at u in direction φ can be derived

and reads as

∂τR(u + τφ) =

∫

Ω

∇φT ∇u

|∇u|
dx. (10)

Note, that by the right hand side of (10) actually the

subdifferential of the total variation semi-norm evalu-
ated in direction φ is meant.

Then, using (9) and (10), with v(k) := u(k)−u(k−1),
gives the optimality condition for the minimizer u(k) of

Fε
u(k−1) :

∫

Ω

φT Aε(u(k))
v(k)

α
dx

+
1

2

∫

Ω

(v(k))T

α
∂φAε(u(k))v(k) dx

=

∫

Ω

∇φT ∇u(k)

∣
∣∇u(k)

∣
∣
dx for all φ .

(11)

Let t > 0 be fixed and k = ⌊t/α⌋, then, as in the convex
case, we can expect that v(k)/α converges to ∂tu(t) for

α → 0. From that, in turn, it follows that v(k) → 0.

This together with (11) then shows that

∫

Ω

φT Aε(u(t))∂tu(t) dx = −

∫

Ω

∇φT ∇u(t)

|∇u(t)|
dx. (12)

Applying, in a formal way, Green’s formula and the

fundamental lemma, from (12) the strong formulation
is derived and reads as

Aε(u(t))∂tu(t) = ∇ ·

(
∇u(t)

|∇u(t)|

)

, (13)

where u(t) satisfies natural (Neumann) boundary con-

ditions.

In the following, again for notational convenience,

we avoid the dependence of u with respect to t as well.
Multiplying both sides of (13) by Aε(u)−1, we get

∂tu = (εI + (∇u)T∇u) ∇ ·

(
∇u

|∇u|

)

. (14)

Moreover, the initial condition associated with the flow

is u(0) := u(0). Now, letting ε → 0, which only seems

to make sense mathematically if M ≤ 2, we obtain the
evolutionary partial differential equation

∂tu = ((∇u)T∇u) ∇ ·

(
∇u

|∇u|

)

. (15)
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Remark 2 For scalar data (M = 1) the equation (15)

reads as

∂tu = |∇u|
2
∇ ·

(
∇u

|∇u|

)

. (16)

One recognizes that (16) differs from the Mean Curva-

ture Flow equation

∂tu = |∇u| ∇ ·

(
∇u

|∇u|

)

(17)

only by the leading factor.

Let p ≥ 0. In the following we consider a generalized

functional of (7), which is defined by

F0,p(u) :=
1

2

∫

Ω

(u − u(0))T
(
((∇u)T∇u)p

)†
(u − u(0))

+ α |∇u| dx

(18)

We note that the power of a matrix is defined via spec-

tral decomposition. Of particular interest is the case
p = 1/2, because then the functional (18) is invariant

under affine rescaling of the image intensity. Moreover,

the semi-group approach (see also [17] for the scalar
case) results in the gradient flow

∂tu = ((∇u)T∇u)1/2 ∇ ·

(
∇u

|∇u|

)

, (19)

which, in the scalar case, is exactly the Mean Cur-

vature Flow (MCF) equation. For scalar, radial-sym-

metric monotonous data an analytical comparison of
the solutions of (18) and the MCF equation has been

given in [15]. There is however also a different interpre-

tation in terms of statistical errors, which assumes the
geometric mean of intensity and displacement errors.

5 Mean Curvature Dependent Optical Flow

Here, we concentrate on the case M = 1, i.e., on scalar
valued images. We recall (3), which states that the op-

tical flow Φ − Id according to u(t) satisfies

Φ − Id = (∇u)T †(−∂tu) .

Now, let u be the solution of (16). Taking into ac-
count that the pseudo–inverse of (∇u)T is ∇u/ |∇u|

2
,

it follows from (16) that

Φ − Id = −
∂tu

|∇u|
2∇u

= − |∇u| ∇ ·

(
∇u

|∇u|

)

︸ ︷︷ ︸

=:κ

∇u

|∇u|
.

(20)

This shows that the optical flow according to the solu-

tion of (16) develops according to the mean curvature
κ in normal direction to the level lines of u. To illus-

trate this fact numerically, we calculate the optical flow

displacement from two subsequent time frames of the
solution of (16) (see Fig. 2 top row) using (20). The

result is depicted in Fig. 2, bottom row.

For comparison, for the Mean Curvature Flow equa-

tion (17) the level set of u evolve according to mean

curvature.

6 Applications

In this section we discuss applications for displacement
regularization. In particular, these are dejittering, dein-

terlacing and image zooming.

For the shortness of presentation, concerning dejit-

tering and deinterlacing we only present case examples

to support the theoretical concept. For image zooming,
numerical examples and a comparison to standard and

state-of-the-art methods are provided in Section 7.

6.1 Dejittering Regularization

In the following we consider images which are perturbed

by jittering in the x-direction (see Figure 3, top middle).

Our ansatz addresses pixel jitter (as e.g. in [39,45])

in contrast to line jittering (see e.g. [23,31,38]).

We assume that data u(0) satisfies

u(0)(x) = u(x + dx1) = u(x1 + dx1, x2) ,

where dx1 denotes the jittering in x1-direction. In case

of line jitter, dx1 is constant in direction of x1.

By a Taylor series expansion we find that u(0)(x)

is approximated by u(x) + dx1u
′(x), where u′ is the

derivative with respect to the x1-direction. Consequently

we have

u
(0)
i (x) − ui(x)

u′
i(x)

∼ dx1 for each i = 1, 2, 3 .

We assume that dx1 is Gaussian distributed, which sug-
gests to use the regularization functional

u →
1

6

3∑

i=1

∫

Ω

(ui − u
(0)
i )2

|u′
i|

2 + α |u|TV ,

for dejittering of u(0). Considering iterative regulariza-

tion and the asymptotic limit as before in Section 4, we
end up with the flow equation

∂u

∂t
= (|u′

1|
2
, |u′

2|
2
, |u′

3|
2
)T · ∇ ·

(
∇u

|∇u|

)

, (21)
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Fig. 2 Test example for computing displacements of the gradient flow (16). Top: solution of the gradient flow at t1 = 20 (left) and
t2 = 30 (right). Bottom left: displacement field calculated via (20) (vectors were upscaled for accentuation). The figure shows that the
displacement field is pronounced at regions of high curvature. Bottom right: absolute value of the displacement field.

where · denotes the componentwise product. Concern-

ing bio-medical applications a possible application is for

aligning of 2D stacked images to a 3D voxel set.

We note that for gray valued data the proposed de-

jittering equation becomes

∂u

∂t
= |u′|

2
∇ ·

(
∇u

|∇u|

)

.

In order to show the practical applicability of this

ansatz, we consider a test example. Fig. 3, top middle,

shows an image with artificially added line jitter. The

original image is depicted in Fig. 3, top left. In order
to dejitter the data, we numerically solve the proposed

PDE (21) with the jittered image being the initial func-

tion u(0). The result of the dejittering is shown in Fig. 3,
top right. Details of the original, jittered and dejittered

image are provided in the bottom row of Fig. 3.

6.2 Deinterlacing

Another application, which can be reconsidered in the

context of displacement regularization, is deinterlacing.

Interlaced data are produced for instance when trans-

mitting television signals. There, the goal is to increase

the frame rate without changing the amount of trans-

mitted data. To this end each frame is split into two
areas, one area containing the lines with even and one

containing the lines with odd numbers. The areas are

alternately transmitted. The process of reconstructing
a complete frame from the received data is called dein-

terlacing. For an overview over the topic of interlac-

ing/deinterlacing we refer to [12,13].

One simple way to deinterlace is to just combine
two consecutive areas. Then, since both areas belong

to different time frames, interlacing artifacts occur, see

Figure 4, middle left.

The reconstruction of a frame from only one area
is an inpainting problem, which can be solved e.g. by

using standard interpolation schemes such as piecewise

constant (line doubling), linear and cubic interpolation.

State-of-the-art methods utilize inpainting techniques,
variational methods or diffusion processes in combi-

nation with motion estimation based on optical-flow

methods, see e.g. [2,16,24,25,43].
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Fig. 3 Dejittering top left: original test image, top middle: image with artificial pixel jitter, top right: result of numerically solving

the proposed PDE (21) with the jittered image used as initial data u(0). bottom left: detail of original image, bottom middle: detail
of jittered image, bottom right: detail of result.

Here we consider the reconstruction of a frame based

on its two consecutive areas.
We describe our ansatz in a continuous formulation:

We consider a domain Ω ⊂ R
2, which is divided into

two separate subdomains Ωeven and Ωodd in a way that
|Ω \ (Ωeven ∩ Ωodd)| = 0. Now let u(t, x) : [0, T ]×Ω →

R
M . Considering data u1 := u(t1, .) and u2 := u(t2, .)

at times t1 and t2, respectively. We assume u1 to be
known only on the sub-domain Ωeven (field 1) and u2 to

be known only in sub-domain Ωodd (field 2). We define

u(0) :=

{

u1 on Ωeven,

u2 on Ωodd.

We make the assumption that between the recordings

of data u1, and u2 only the positions of the camera
and the objects in the scene have moved. Then, apart

from regions affected by occlusion, the error between

u1 and u(0) on Ωodd is just a displacement error. Thus,
we can perform deinterlacing by solving the proposed

PDE (15) on domain Ωodd with initial data u(0) and

Dirichlet boundary conditions on the interfaces between

Ωeven and Ωodd and Neumann boundary conditions on
the boundary of Ω.

We demonstrate the applicability of our method by

means of the test image depicted in Fig. 4, middle left.

The test image was created from the two frames shown

in Fig. 4, top row, by combining the even lines of the
first and the odd lines of the second frame. The frames

were taken from the Tsukuba image sequence available

from the site http://vision.middlebury.edu (see also [35]).

For deinterlacing, the test image is taken as initial

data u(0) for the PDE proposed above. The result of nu-
merically solving the PDE is depicted in Fig. 4, middle

left. In order to highlight the error of the deinterlacing

process, we provide the difference between the deinter-
laced data and the original frame u1 in Fig. 4, bottom

row.

6.3 Interpolation of Multi-Channel Data

The evolution equations (14) and (19) (with regulariza-

tion of the pseudo–inverse) can be used for interpolating

discrete multi-channel data by restricting u to satisfy

interpolation constraints. In this section we concentrate
on the PDE (14).

The problem of interpolating multi-channel data has
already been studied in the literature before, see for

example [3,33,34,42]. The difference between the ap-

proaches in [33,34,42] and ours are the different partial
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Fig. 4 Test example for deinterlacing, top left: first frame, top right: second frame, middle left: interlaced data, middle right: result

of applying the proposed PDE with initial data u(0), bottom left: difference between u1 and the deinterlaced result.

differential equations used for filtering: [33,34,42] use

anisotropic diffusion, whereas the PDE (14) general-

izes the Mean Curvature Flow equation (recall that the
equation (15) is the asymptotic limit).

To begin with, we recall the interpolation constraints

proposed in [18,28]. For the simplicity of notation we

restrict ourself to multi-channel data defined on a two-

dimensional rectangular domain

Ω :=

(
1

2
, Nx +

1

2

)

×

(
1

2
, Ny +

1

2

)

,

where Nx, Ny ∈ N. The domain is partitioned into cells
(’pixels’)

Qi,j :=

(

i −
1

2
, i +

1

2

)

×

(

j −
1

2
, j +

1

2

)
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for (i, j) = (1, 1), (1, 2), . . . , (Nx, Ny). Let G be a kernel

function G defined on R
2 and compactly supported in

[− 1
2 , 1

2 ]2. Let Z := (zm,i,j) be a tensor, which denotes

sampled data of a function G ∗u : R
2 → R

M at the po-

sitions (i, j). Here ∗ denotes the convolution operator.
In particular:

zm,i,j := (G ∗ um)(i, j), (22)

for (m, i, j) = (1, 1, 1), (1, 1, 2) . . . , (M,Nx, Ny). Exam-

ples for kernel functions typically used in literature are

listed in [33].

We rewrite (22) as follows: Let Gi,j := G(· − (i, j)),

then for each (m, i, j) = (1, 1, 1), . . . , (M,Nx, Ny)

zm,i,j = 〈Gi,j , um〉L2(Ω) ,

where

〈u, v〉L2(Ω) =

∫

Ω

u · v

is the L2 inner product.

We say that an multi-channel function

u = (u1, . . . , uM )T

satisfies the interpolation constraints for some discrete

data Z = (zm,i,j), if

〈Gi,j , um〉L2(Ω) = zm,i,j .

The set of functions satisfying the interpolation con-

straints for data Z is denoted by UZ,G.

Example 1 We consider for G the two-dimensional δ

distribution, i.e.,

G(x, y) = δ(x)δ(y).

Then zm,i,j = um((i, j)). The nearest neighbor (compo-
nentwise, piecewise constant) interpolation reads as

u(0)
m |Qi,j

= zm,i,j , (m, i, j) = (1, 1, 1), . . . , (M,Nx, Ny) .

Here, u(0) = u ◦ Φ is satisfied for

Φ(x, y)|Qi,j
:= (i, j).

In particular u can be interpreted as a distortion of u(0)

by a local sampling displacement Φ.

Now let u(0) ∈ UZ,G be arbitrary. The nearest neigh-

bor interpolation in Example 1 motivates the assump-

tion that, for a sampled function u, there exists Φ such
that u(0) = u ◦ Φ. Recalling the concepts presented in

Section 2 we consider the functional defined in (8) re-

stricted to the set UZ,G in order to reconstruct u from

given data u(0). In turn, we restrict the flow equation

(14) to UZ,G:

∂tu = PU0,G

(

(εI + ∇uT∇u)∇ ·

(
∇u

|∇u|

))

, (23)

where

PU0,G
(v) = v − ‖G‖

−2
L2(R2)

Nx∑

i=1

Ny∑

j=1

〈Gi,j , v〉L2(Ω) Gi,j

is applied on each component separately. Note that the

assumption u(0) ∈ UZ,G together with ∂tu ∈ U0,G as-

serts that the solution u(t) stays in UZ,G for all t ≥ 0.

At this point we remark that there is no analytical the-
ory guaranteeing the well posedness of (23).

Since the PDE (23) comprises a projection, for a
the numerical solution a time-explicit scheme with suf-

ficiently small step size ∆t is required.

7 Numerical Results for Image Interpolation

We compare our method consisting in numerically solv-
ing (23) to two standard interpolation methods, namely

nearest neighbor and cubic interpolation, as well as to

established, sophisticated interpolation methods pro-
posed by Tschumperlé & Deriche [44] and by Roussos

& Maragos [34]. The method of Tschumperlé & De-

riche is implemented in the GREYCstoration software

(see http://cimg.sourceforge.net/greycstoration/), test
results for the method of Roussos & Maragos are avail-

able from the site http://cvsp.cs.ntua.gr/∼tassos/

PDEinterp/ssvm07res/.

In our method, the kernel function has to be chosen

appropriately. We use

G(x, y) :=
1

∫

[−1/2,1/2]2
gσ(x, y) dx dy

χ[−1/2,1/2]2 gσ(x, y),

where gσ is the two-dimensional isotropic Gaussian of

standard deviation σ. A value of 20 is used for the vari-

ance σ2. The initial data u(0) are obtained from a sinc-
interpolation satisfying the interpolation constraints in-

troduced in Section 6.3.

For evaluating the different methods, we use the
three test images shown in Fig. 5. For each image, a low

and a high resolution version is available, where the low

resolution image is obtained from the high resolution
image via low-pass filtering (convolution with a bi-cubic

spline) and down-sampling by a factor of four. The

test images were obtained from http://cvsp.cs.ntua.gr/
∼tassos/PDEinterp/ssvm07res/.

The methods mentioned above are used to up-sample

the low resolution image by a factor of four.
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Fig. 5 Three test images. Each test image is available in a low and a high resolution version with a factor of four between both

resolution.

Our method is applied with 100 time steps, ∆t =

0.03 , ε = 0.05 and σ2 = 20 for the first and 100 time

steps, ∆t = 0.05, ε = 0.01 and σ2 = 20 for the second
test image, respectively. Except as noted otherwise, we

use the PDE (14), which corresponds to the choice p =

1 in (18).

For GREYCstoration (version 2.9) we use the op-

tion ’-resize’ together with the aimed size of the high

resolution image and parameters ’-anchor true’, ’-iter 3’

and ’-dt 10’. For the remaining parameters the default
values are used. The results of Roussos’ method were

obtained from the web site mentioned above.

Let us consider the results of up-sampling the first

test image. In order to highlight the differences between

the methods, we compare only details of the resulting
images, see Fig. 6.

The results with nearest neighbor and cubic interpo-

lation are shown in Fig. 6, top right and middle left, re-

spectively. Both results are unsatisfactory and confirm,
what is well known from the literature, that by near-

est neighbor interpolation the up-sampled images look

blocky and cubic interpolation produces blurry images.
The result of GREYCstoration with interpolation con-

straints (Fig. 6, middle row right) also appears blurry,

but compared to cubic interpolation better reconstruct

the edges in the image. The method proposed by Rous-
sos & Maragos as well as our method (see Fig. 6, bottom

row) produce sharp and well reconstructed edges.

In section 4 we also investigated the energy func-
tional (18) for the case p = 1/2 and the corresponding

PDE (19). With our method adapted to this case, the

results are slightly smoother than in the case of p = 1,

but the difference is merely visible. For this reason the
results for p = 1/2 are not depicted here.

In order to further investigate the differences be-
tween the PDE based methods, we zoom into two re-

gions of the second test image, one region containing

an edge (see Fig. 7) and one region with texture (see
Fig. 8).

Fig. 7 shows the edge region after applying the meth-

ods proposed by Tschumperlé with interpolation con-

straints (top row, second left), Roussos (top row, second

right) and our method (top row, right). For comparison

we have plotted also the detail of the original image (top

row, left). One can see that by Tschumperlé’s method
the edges appear blurry and irregular. This seems to

be an effect of the interpolation constraints, because

when Tschumperlé’s method is applied without con-
straints, strong anisotropic diffusion orthogonal to the

image gradient enhances the edges. By the method of

Roussos the edge is reconstructed in a sharp way, but
overshoots appear. Our method is also able to recon-

struct the edge sharply but with little overshoots. Con-

cerning the gray mark at the parrot’s beak, we observe

that Tschumperlé’s method reconstructs the shape of
the mark better than the other methods do.

The differences in the behavior of the methods can

also be recognized when applying the Sobel-operator
to the interpolated images: The thickness of the edges

in the result of the Sobel-operator indicates the blur-

riness of the reconstructed edge. We see that the pro-
posed method produces sharper edges than the method

by Roussos and more regular edges than the method

by Tschumperlé. The overshoots introduced by Rous-

sos’ method can also be observed in the outcome of the
Sobel-operator. They are far stronger than the over-

shoots produced by our method.

Now we investigate the effect of the interpolation
methods on textures. Fig. 8, top left, shows a textured

region of the original image. The results of the meth-

ods proposed by Tschumperlé (with interpolation con-

straints) and Roussos are given in Fig. 8, top right and
bottom left, respectively. The result of the proposed

method is shown in Fig. 8, bottom right. One observes

a certain blurriness in the results by Tschumperlé’s
method. As for the result before, we point out that in-

corporating the interpolation constraints seems to have

a strong effect on the result. When applying GREYC-
storation without imposing constraints, the results are

much more influenced by the anisotropic diffusion and

the edges and the texture are accentuated. In the re-

sult of the interpolation method proposed by Roussos,
we see a strong effect of the anisotropic diffusion on

the texture, so that the result is more visually appeal-

ing than the other results. Nevertheless, a comparison
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Fig. 6 Up-sampling by a factor of four, Detail of the first test image. top left: original high resolution image, top right: nearest
neighbor interpolation, middle left: cubic interpolation, middle right: interpolation using GREYCstoration, bottom left: interpolation

method proposed by Roussos et. al, bottom right: proposed interpolation method

with the original image shows that original and recon-

structed texture differ significantly. In particular the

orientations of the short stripes in the face of the par-

rot are different. Note that the anisotropic diffusion in-
duced by the direction of the texture also affects the

pupil of the parrot. On the result of our method we

remark that the reconstruction of the texture is quite
conservative, i.e., we stay near the initial guess. The

blockyness is slightly reduced by the evolution process.

Taking a look at the eye of the parrot, the relation of
our method to Mean Curvature Flow can be observed:

The pupil is reconstructed as a perfectly circular shape.

We also provide a quantitative error measure to

compare the proposed method with standard and state-

of-the art interpolation methods.

Motocross Parrots House

Nearest n. 127.24 40.67 69.53

Cubic 114.66 33.46 64.38
Lanczos 119.10 34.99 66.15
proposed p = 1/2 108.89 31.58 62.68
proposed p = 1 108.04 31.54 62.72

Tschumperlé 120.45 37,35 67.89
Roussos 109.04 31.60 62.74

Table 1 Difference between the interpolated image and the high-
resolution counterpart, measured in the TV -norm for the different
test images and interpolation methods.

To this end we choose the three different test im-

ages shown in Figure 5 and seven different interpolation
methods: nearest neighbor interpolation, cubic interpo-

lation, Lanczos interpolation, the methods proposed by

Tschumperlé and by Roussos and the proposed method.
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Fig. 7 Detail of an edge in the original and interpolated images (top row, using GREYCstoration with interpolation constraints,
Roussos’ method, and the proposed method) and subsequently applied Sobel-operator (bottom row).

For the latter we also applied the modified version with

p = 1/2.
We measure the difference between an interpolated

image u and the corresponding high-resolution image

u∗ with respect to the (discrete) TV -norm,

|v|TV :=
∑

i,j

|vi,j | +
∑

i,j

√

(vi+1,j − vi,j)2 + (vi,j+1 − vi,j)2,

see Table 1. We have chosen the TV -norm for the fol-
lowing reasons:

– Using an Lp-norm of u − u∗ is inappropriate, since
this error measure is biased by the interpolation con-

straint.

– The above discussion shows that the methods act

differently mainly in regions, where the absolute value
of ∇u∗ is high, i.e., edges and textures. A suitable

error measure should therefore incorporate the gra-

dient.

– The TV -norm is known to be a suitable norm for

image processing purposes.

Table 1 shows that the proposed method achieves
optimal interpolation errors with respect to the TV -

norm. Only Roussos method is capable of providing

comparable error rates.

8 Conclusions

We have proposed novel partial differential equations

which have been designed to correct and filter for dis-
placement errors in multi-channel data. These equa-

tions are derived via a semi-group for a non-convex en-

ergy functional. In the particular case of gray valued

data, we find a partial differential equation which de-
velops optical flow displacements in normal direction of

the level lines. Therefore, the paper links morphological

partial differential equations (such as the mean curva-
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Fig. 8 A texture detail of the original (top left) and interpolated images using GREYCstoration (top right), Roussos’ method (bottom

left) and the proposed method (bottom right).

ture motion), non-convex variational principles, and the

optical flow.

Particular applications to deinterlacing, dejittering,

and image zooming have been studied. These applica-
tions show the principal capability of the differential

equations to satisfy this task.

When combined with the interpolation constraints,

the novel methods are also very well suited for image

interpolation. A comparison of the results from the pro-
posed method and from interpolation methods from

the scale space literature, in particular the GREYC-

storation software of Tschumperlé and the interpola-
tion method proposed by Roussos & Maragos, shows

the competitiveness of our method.

Moreover we discussed the application of the pro-

posed methods for the problems of dejittering and dein-

terlacing.
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