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Abstract. Tikhonov initiated the research on stable methods for the numerical solu-

tion of inverse and ill-posed problems. The theory of Tikhonov regularization devel-

oped systematically. Till the eighties there has been a success in a rigorous and rather

complete analysis of regularization methods for solving linear ill-posed problems. Around

1989 a regularization theory for non–linear inverse problems has been developed. About

the same time total variation regularization for denoising and deblurring of discontin-

uous data was developed; here, in contrast to classical Tikhonov regularization,the func-

tional is not differentiable. The next step toward generalization of regularization methods

is non-convex regularization. Such regularization models are motivated from statistics
and sampling theory. In this paper we review the history of Tikhonov type regulariza-

tion models. We motivate non-convex regularization models from statistical consideration,

present some preliminary analysis, and support the results by numerical experiments.
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1 Introduction

Inverse problems have been an emerging field over many years. The importance of this
field is due to a wide class of applications such as medical imaging, including computerized

tomography (see e.g. Natterer et al [72, 73]), thermoacoustic imaging (see e.g. Liu [62],
Kruger et al [59]), electrical impedance tomography (see e.g. Borcea [8], Cheney, Isaacson
& Newell [18], Pidcock [80]). Many of these applications are nowadays assigned to the
area of imaging. R. West [98] has published the recent survey “In industry seeing is
believing”, which best documents the importance of this area for industrial applications.

Very frequently with Inverse Problems ill-posedness is associated. That is, there are
instabilities with respect to data perturbations and instabilities in the numerical solution
(see e.g. Engl & Hanke & Neubauer [34]). Tikhonov initiated the research on stable
methods for the numerical solution of inverse problems. Tikhonov’s approach consists in
formulating the inverse problem as solving the operator equation

F (u) = y .

Then the solution (presumably it exists) is approximated by a minimizer of the penalized
functional

‖F (u)− y‖2 + α‖u− u0‖2 (α > 0) .

Here u0 is an a–priori estimate. Nowadays this approach is commonly referred to as
Tikhonov regularization. In this paper we solely consider penalized minimization problems
(motivated from Tikhonov regularization); for other types of regularization methods, such
as iterative regularization, we refer to the literature [43, 47, 34, 27].

In the early days of regularization mainly linear ill–posed problems (i.e. F is a linear
operator) have been solved numerically. The theory of regularization methods developed
systematically. Until the eighties there has been success in a rigorous and rather complete
analysis of regularization methods for linear ill-posed problems. We refer to the books of
Nashed [69], Tikhonov & Arsenin [95], Colton & Kress [20, 21], Morozov [66, 67], Groetsch
[43, 41, 42], Natterer [72], Engl & Groetsch [33], Banks & Kunisch [4], Kress [57], Louis
[63], Kirsch [55], Engl & Kunisch & Neubauer [34], Bertero & Boccacci [7], Hofmann [51],
Rieder [84].

In 1989 Engl & Kunisch & Neubauer [35] and Seidman & Vogel [91] developed an
analysis of Tikhonov regularization for non–linear inverse problems. Here F is a non-
linear, differentiable operator.

About the same time Rudin & Osher & Fatemi [86] (see also Rudin & Osher [85])
introduced total variation regularization for denoising and deblurring, which consists in
minimization of the functional

FROF (u) := ‖F (u)− y‖2 + α‖Du‖ ,

where ‖Du‖ is the bounded variation semi-norm (for a definition of the bounded vari-
ation semi-norm we refer to Evans & Gariepy [36]). In contrast to classical Tikhonov
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regularization, the penalization functional is not differentiable. The Rudin-Osher-Fatemi
functional is highly successful in restoring discontinuities in filtering and deconvolution

applications.
The next step toward systematic generalization of regularization methods is non-convex

regularization. Here the general goal is to approximate the solution of the operator equa-
tion by a minimizer of the functional u 7→

∫

g(F (u) − y, u,∇u) . By non-convex we
mean that the functional g is non-convex with respect to the third component. From
the calculus of variations it is well-known that even in the case F = I the non-convexity
requires to take into account appropriate minimizing concepts, such a Γ-limits and quasi-

convexification have to be taken into account (see Dacorogna [22] and Dacorogna &
Marcellini [23]). Recently polyconvex regularization functionals have been studied by
Christensen & Johnson [19] for brain imaging and by Droske & Rumpf [28] for image
registration. In [88] non-convex regularization models have been developed for filtering.

The outline of this paper is as follows: in the following sections we review Tikhonov
type regularization methods for linear and nonlinear ill-posed problems, total variation
regularization. Then we introduce non-convex regularization motivated by statistical
considerations and present some preliminary analysis. Moreover, some numerical experi-
ments are presented.

2 Tikhonov Regularization for the Solution of Linear Ill–Posed Problems

In this section we review the method of Tikhonov regularization for the solution of
linear ill–posed operator equations

Lu = y , (1)

where L : U → Y is a linear operator between Hilbert spaces U and Y .
Important examples of linear problems are summarized below:

Denoising: In this case L = I and the goal is to recover y from yδ, which is the data y

corrupted by noise. Denoising is an important pre-processing step for many applica-
tions, such as segmentation. Some survey on this aspect is [89] and an introductory
article [48].

Evaluation of unbounded operators, respectively numerical differentiation:
The goal is to find an approximation of the derivative of y from noise corrupted
data yδ. For some references we refer to Groetsch [40, 44].

Deconvolution and Deblurring: Here Lu(x) =
∫

k(|x − y|)u(y) dy where k is the
convolution operator, typically k is a Gaussian kernel. The general case of solving
Lu(x) =

∫

k(x, y)u(y) dy (where k is the blurring operator) is called deblurring. For
a recent reference we refer to Bertero & Boccacci [7].

Computerized Tomography: Here L is the Radon transformation. See e.g. Natterer
[72].

3



F. Lenzen and O. Scherzer

Thermoacoustic Imaging: Here L is the spherical mean operator (see e.g. Agranovsky
& Quinto [3] and Finch & Patch & Rakesh [37]). For applications to imaging we
refer to Liu [62], Kruger et al [59, 58, 60] Xu & Wang [102, 100, 101, 103] and
Haltmeier et al. [45].

Tikhonov regularization consists in approximation of the solution of (1) by a minimizer
of the functional

FL(u) := ‖Lu− yδ‖2Y + α‖u‖2U . (2)

In the functional yδ denotes noisy measurement data of the exact data y, ‖ · ‖Y and ‖ · ‖U
denote the norm on the Hilbert spaces Y and U , respectively. Typically U and Y are
Sobolev spaces on a compact domain Ω ⊆ R

n. For a definition of Sobolev spaces we refer
to Adams [2]. In the following, in order to simplify the notation we omit the subscripts U
and Y in the definition of the norms. The actual norms will be obvious from the contents.

Since the functional FL is strictly convex, the minimizer of FL (denoted by uδ
α) is

unique. It is characterized by the solution of the optimality equation

L∗(Lu− yδ) + αu = 0 . (3)

Here L∗ denotes the adjoint of L. The adjoint varies for different norms on the Hilbert
spaces U and Y .

In the following we denote by u† the minimum norm solution of (1), that is the solution
which is in the orthogonal complement of the null-space of L, N⊥.

Typical stability results for Tikhonov regularization (see e.g. Groetsch [43]) read as
follows:

Theorem 2.1. Let u† ∈ U be the minimum norm solution of (1), and let uδ
α be the

regularized solution. Then for yδ → y =: y0

uδ
α → u0

α =: uα .

This results states that for a fixed positive parameter α the regularized solution is
stable with respect to data perturbations.

Convergence results for Tikhonov regularization use information on the noise level
δ = ‖yδ − y‖:

Theorem 2.2. Let u† ∈ U be the minimum norm solution of (1). Let yδ → y and α(δ)
be chosen such that α(δ) → 0, δ2

α(δ)
→ 0 for δ → 0, then

uδ
α(δ) → u† .

The later result shows that with an appropriate choice of the regularization parameter
α the Tikhonov regularized solution approximates the exact solution u†.
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3 Tikhonov Regularization for Non–Linear Ill–Posed Problems

In 1989 Engl & Kunisch & Neubauer [35] and Seidman & Vogel [91] developed an
analysis of Tikhonov regularization for non–linear inverse problems. Some of these results
are reviewed in this section. We consider the solution of the nonlinear operator equation

F (u) = y , (4)

where F : U → Y is a non-linear, weakly closed and continuous operator between Hilbert
spaces U and Y .

Important examples of non-linear inverse problems are

Electrical Impedance Tomography (EIT), which consists in estimating the elec-
trical conductivity a in

∇ · (a∇u) = 0 in Ω

from pairs of boundary data and measurements
(

ui,
∂ui

∂n

)

i∈I at ∂Ω for an appropriate
index set. For some reference on EIT we refer e.g. to [56, 5, 80, 81, 9, 61, 18, 92,
14, 8, 13] to name but a few.

Inverse Source Problems: See e.g. Hettlich & Rundell [49].

Inverse Scattering: See e.g. Colton & Kress [20, 21].

Tikhonov regularization consists in approximation of the desired solution (4) by the mini-
mizer of the functional

FN(u) := ‖F (u)− yδ‖2Y + α‖u− u0‖2U . (5)

Formally, the essential difference to the linear case is that in the penalizing functional
an a–priori guess of the solution is introduced. As we see below, the a–priori guess
allows a convergence analysis for the minimum solution u† of (4); that is a solution of (4)
that minimizes ‖u− u0‖2U under all functions u that solve (4) (presumably there exists a
solution).

In contrast to the linear setting, the functional FN may no longer be convex, and
the minimizer of FN may not be unique. If the operator F is Fréchet-differentiable, a
minimizer uδ

α satisfies the optimality equation

F ′(u)∗(F (u)− yδ) + α(u− u0) = 0 . (6)

Here F ′(u)∗ denotes the adjoint of the Fréchet-derivative F ′(u).
Typical stability results for Tikhonov regularization (see e.g. Engl & Hanke & Neubauer

[34]) read as follows:
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Theorem 3.1. Assume there exists a minimum norm solution of (4), denoted by u† ∈ U .

Let {yk}k∈N be a sequence where yk → yδ and let uk be a minimizer of FN where yδ is

replaced by yk. Then there exists a convergent subsequence of {uk}k∈N and the limit of

every convergent subsequence is a minimizer of FN .

In contrast to the linear case just convergence of a subsequence can be proven. This
weakness is due to the fact that the minimizer of the Tikhonov functional may not be
unique. This result states that for a fixed positive parameter α the regularized solution
is stable with respect to data perturbation.

The convergence result stated in Engl & Hanke & Neubauer [34] reads as follows:

Theorem 3.2. Assume there exists u† ∈ U . Let α(δ) be chosen such that

α(δ) → 0 and
δ2

α(δ)
→ 0 for δ → 0 .

Let {yk}k∈N again be a sequence where yk → yδ. Then every sequence {uδk
α(δk)

}k∈N, where
δk → 0, and u

δk
α(δk)

is a minimizer of FN with yδ replaced by yk, has a convergent subse-

quence, and the limit is a u0-minimum-norm-solution. If the u0-minimum-norm-solution

is unique, then

uδ
α(δ) → u† .

4 Regularization Methods with Convex Non–differentiable Penalty Term

Rudin & Osher & Fatemi [86] (see also [85]) introduced total variation regularization

for denoising and deblurring. This method consists in minimization of the functional

FROF (u) :=
1

2
‖F (u)− y‖2 + α‖Du‖ ,

where ‖Du‖ is the bounded variation semi-norm on a compact domain Ω ⊆ R
n, which is

defined as follows (see e.g. Evans & Gariepy [36])

‖Du‖ := sup

{
∫

Ω

u∇ · ~v : ~v ∈ C∞
0 (Ω;Rn) , |~v| ≤ 1

}

. (7)

Here | · | denotes the Euclidean norm and ∇·~v is the divergence of a vector valued function
~v. For more background on functions of bounded variation we refer to Evans & Gariepy
[36]. Note that for a continuously differentiable function u, ‖Du‖ =

∫

Ω
|∇u| .

Conceptually this functional differs from classical Tikhonov regularization since the
penalization functional is not differentiable. The Rudin-Osher-Fatemi functional is highly
successful in restoring discontinuities in filtering and deconvolution applications. The
analysis of total variation regularization is significantly more involved since the penal-
ization functional is not differentiable. We refer to Acar & Vogel [1] for a preliminary
analysis of total variation regularization methods.
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Over the last 10 years various non-differentiable regularization methods have been
developed. Their success in image processing is driven by the fact that they allow for
data selective filtering.

1. Based on statistical considerations Geman and Yang [38] developed half-quadratic

regularization for image processing applications (see also [17]).

2. Recently there has been a revival of regularization norms based on total variation
regularization, where in the definition the Euclidean norm is replaced by some p-
norm (see e.g. [77]).

3. In the statistical literature total variation regularization (in a discrete setting for
analyzing one dimensional data) is very frequently associated with the taut-string

algorithm (see Mammen & Geer [64] and Davies & Kovac [24]).

4. The taut-string idea has been extended to robust, quantile and logistic regression

models [29]. In a functional analytical framework an analysis of these models based
on G-norm properties has been given in [78]. For a definition of the G-norm we
refer to Meyer [65]. Robust regression consists in minimization of the functional

∫

Ω

|F (u)− f |+ α‖Du‖ .

Note that here both the fit to data term and the penalization functional are not
differentiable. From the statistic literature it is well–known that robust regression

is capable of handling outliers efficiently.

5. For φ convex, Vese [97] studied regularization models of the form

∫

Ω

(Lu− f)2 + α

∫

Ω

φ(Du)

for denoising and deblurring on the space of functions of bounded variation. In
this case the functional

∫

Ω
φ(Du) is defined via Fenchel transform (see Ekeland &

Temam [30] and Temam [94]).

In the discrete setting an analysis of such regularization method has been given by
Nikolova [76].

6. To make classical regularization theory applicable for recovery of discontinuous solu-
tions Neubauer et al. [74] used curve representations of discontinuous functions
considered of graphs. The single components of the graph functions are regularized
by the H1-Sobolev norm.
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For analyzing 1-dimensional discrete data, Steidl & Weickert [93] (see also [93, 12, 68])
investigated under which conditions soft Haar wavelet shrinkage, total variation regu-

larization, total variation diffusion, and a dynamical system are equivalent. It is quite
notable that in a discretized setting the solution of the total variation flow equation

∂u

∂t
=

(

ux

|ux|

)

x

(8)

(where the derivatives are replaced by difference quotients) at time α and the minimizer
of the discrete total variation regularization correspond. Note that by semi-group theory
(see e.g. Brezis [11]) total variation regularization corresponds to performing one implicit
time step of (8) with step length α.

4.1 Higher Order Derivatives of Bounded Variation

To our knowledge Chambolle & Lions [15] first studied BV -models with second order
derivatives for denoising. Their approach consists in minimization of the functional

FC−L(u1, u2) :=
1

2

∫

Ω

(u1 + u2 − f)2 + β‖Du1‖+ α‖D2u2‖ (0 < α, β) .

Here

‖D2u‖ =

∫

Ω

|Hu| ,

where Hu denotes the Hessian of u. The asymptotic model, for β → +∞, for denoising
has been introduced in [87]: the noisy function f is approximated by the minimizer of the
functional

FD(u) :=
1

2

∫

Ω

(u− f)2 + α‖D2u‖ (9)

over the space of bounded Hessian BH. For more background on the space BH we refer
to Demengel [25, 26] (see also Evans & Gariepy [36]). The motivation for studying this
type of regularization arises from nondestructive evaluation to recover discontinuities of a
derivative of a potential u in impedance problems. The discontinuities of u are locations
of material defects (see e.g. Isakov [52, 53]). Later on, second order models for denoising
have been considered by Chan & Marquina & Mulet [16]. Moreover, this functional can
also be used for recovery of object borders in low contrast data (see [50]).

4.2 Other Non-Quadratic Regularization Functionals

Various other non-quadratic regularization models have been developed in statistics
(see e.g. Dümbgen & Kovac [29]), where they are commonly referred to as regression

models. In addition to non-quadratic, non-differentiable regularization functionals there
have been proposed a variety non-quadratic, differentiable regularization methods. Some
of them have been motivated by applications: Engl & Landl [31, 32] used the convex
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maximum entropy regularization for stabilization. On the other hand driven by the need
of efficient numerical methods for solving non-differentiable regularization functionals,
differentiable approximations have been derived. See e.g. Chambolle & Lions [15], Nashed
& Scherzer [70], Radmoser & Scherzer & Weickert [82, 83, 90], to name but a few.

5 Non-convex Regularization

In this section we present and analyze non-convex regularization models for denoising.
Polyconvex regularization models have been used for image-registration applications by
Christensen & Johnson [19] and Droske & Rumpf [28].

Typically, in image denoising applications, the assumption is that the noise for the
intensity values at the single pixels is uncorrelated and Gaussian distributed. As outlined
below, the standard statistical approach of maximum probability (MAP) estimator for
denoising applications can be considered a quadrature rule of Tikhonov regularization. For
a recent survey on the relation between statistics and regularization we refer to Hamza
& Krim & Unal [46]. General reference books on statistics and probability theory are
[6, 79, 54].

In the following we review the relation between statistical filtering and regularization.
Based on these considerations we derive regularization methods for perturbations in the
sampling points. That is, we assume that the persistent noise is due to sampling errors.

5.1 Statistical Modelling for Denoising Problems

In the beginning, for the sake of simplicity of presentation, we consider the one-

dimensional sampling problem to recover a signal u from noisy discrete sample data

yδi = ui + δi := u(xi) + δi , i = 1, . . . , d . (10)

That is, we assume that the original signal u(xi) at the sampling point xi is perturbed
with the noise process δi, and therefore the observed signal is yδi . A common assumption
is that the noise process is independent and identically distributed, i.e.,

δ = δi , for i = 1, . . . , d .

In the sequel we denote by ~yδ = (yδ1, . . . , y
δ
d) the observed signal and by ~u = (u1, . . . , ud)

the sampled data of the true signal, which is to be estimated.
Let us denote by p(~u) the prior distribution of ~u, i.e., the probability of the occurrence

of ~u. Using Bayes theorem [10] we have

log p(~u|~yδ) + log p(~yδ) = log p(~yδ|~u) + log p(~u) ,

where p(~yδ|~u) and p(~u|~yδ) denote the conditional probabilities. In particular p(~u|~yδ)
denotes the probability that ~u occurs if ~yδ has been observed. Since ~yδ is the observed
data its probability of occurrence is one and thus

log p(~u|~yδ) = log p(~yδ|~u) + log p(~u) . (11)

9
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A maximum probability (MAP) estimator ~̂u is characterized to maximize the conditional

probability log p(~u|~yδ). That is ~̂u is the most likely event if the data ~yδ has been observed.
If we assume that ui and δi are independent for i = 1, . . . , d, then

p(~u|~yδ) =
d
∏

i=1

p(ui|yδi ) and p(~u) =
d
∏

i=1

p(ui) .

1. If the noise process δ is Gaussian, then

p(yδi |ui) = K exp

(

− δ2

2σ2

)

= K exp

(

−(ui − yδi )
2

2σ2

)

,

for i = 1, . . . , n. Here K is a normalizing positive constant and σ2 denotes the noise
variance.

2. A general model for the prior distribution p(ui) is a Markov random field (MRF)
[99, 10] which is given by its Gibbs distribution

p(ui) =
1

Z
exp

(

−Φ(ui)

λ

)

.

Thus the maximum probability (MAP) estimator ~̂u minimizes the functional

FS(~u) :=
d

∑

i=1

(

Φ(ui) +
λ

2σ2
(ui − yδi )

2

)

.

Several models have been proposed in the literature for choosing the prior Φ(u). A typical
choice is

Φ(ui) := |ui
′|p with p ≥ 1 ,

where ui
′ is considered an approximation of the gradient of the function with sample data

~u. We note that the functional FS can be considered a midpoint quadrature formula of

∫ 1

0

Φ(u(x)) dx+
λ

2σ2

∫ 1

0

(u(x)− yδ(x))2 dx .

If Φ(u(x)) = |u′(x)|2 then this methods is standard Tikhonov regularization for denoising
(cf. Section 2), and the MAP estimator is the minimizer of the discretized Tikhonov
functional.
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5.2 Uncertainty in the Sampling Points

The above derivation assumes errors in the observed intensities ui. In particular it
is assumed that the sampling points ~xi are accurate. In this subsection we derive regu-
larization methods which take into account sampling point errors. That is, we assume
that

ui = u(xi + δi) , i = 1, . . . , d ,

where δ = δi are independent, identically distributed noise processes. Making a Taylor
series expansion shows that

ui − u(xi)

u′(xi)
≈ δi for i = 1, . . . , d .

Following the argumentation of the previous subsection, it can be seen that the MAP
estimator ~̂u minimizes the functional

F(~u) :=
d

∑

i=1

(

Φ(ui) +
λ

2σ2

(ui − yδi )
2

|u′
i|2

)

. (12)

This functional can be considered a quadrature rule for approximating the Tikhonov like
functional

FS(u) :=

∫ 1

0

Φ(u(x)) dx+
λ

2σ2

∫ 1

0

(u(x)− yδ(x))2

|u′(x)|2 dx . (13)

5.3 Uncertainty in the Level Lines

In this subsection we derive regularization methods for resolving sampling errors for
data, ideally defined on uniform regular grid of a square domain in R

2. For arbitrary
space dimension the argumentation is analogous. In contrast to the previous section we
assume that we have sampling data ~yδ of a function u satisfying

yδi = u(~xi + ~δi) . (14)

Here ~δ = ~δi is a multi-dimensional noise process. We assume that the level line {u−1({u(xi)})}
can be parameterized and denote by ~τ , ~n the unit tangential, normal direction to the level
line, respectively. Then, from Taylor series expansion we find

yδi − u(~xi) = u(~xi + ~δi)− u(~xi) ≈
∂u

∂~τ
(xi)

〈

~δi , ~τ(xi)
〉

+
∂u

∂~n
(xi)

〈

~δi , ~n(xi)
〉

=
∂u

∂~n
(xi)

〈

~δi , ~n(xi)
〉

.

(15)

The later identity is true since in tangential direction to the level line we have ∂u
∂~τ

= 0.
Let us denote by ~u := (u1, . . . , un) with ui := u(~xi), i = 1, . . . , d, then from (15) it follows
that

yδi − ui

∂u
∂~n
(xi)

≈ δ~n(xi) ,

11
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where δ~n(xi) = ~δ(xi) ·~n(xi) denotes the noise process in normal direction to the level line,
which again is assumed to be independent and Gaussian. For the sake of simplicity of
notation we consider ~yδ(xi) the restriction of a function yδ(xi) to the sampling points ~xi,

i = 1, . . . , d. We assume that yδ(x)−u(x)
∂u

∂~n
(x)

≈ δ~n(x) almost everywhere in Ω. Then, by taking

into account that
∣

∣

∂u
∂~n
(x)

∣

∣ = |∇u(x)| we find by using the change of variable formula that

∫

p∈R

[
∫

{u−1(p)}
δ2~ndHn−1

]

dp =

∫

p∈R

[
∫

{u−1(p)}

(u− yδ)2

|∇u|2 dHn−1

]

dp =

∫

Ω

(u(x)− yδ(x))2

|∇u(x)| dx .

(16)
Alternatively we could use as a measure of uncertainty

∫

Ω

δ2~n(x) dx =

∫

Ω

(u(x)− yδ(x))2

|∇u(x)|2 dx =

∫

p∈R

[
∫

{u−1(p)}

δ2~n
|∇u|dH

n−1

]

dp . (17)

Using a prior Φ(u), and proceeding as above we end up with minimization of functionals

FS(u) :=

∫

Ω

(u(x)− yδ(x))2

|∇u(x)|p dx +
λ

σ2

∫

Ω

Φ(u)(x) dx with p = 1, 2 . (18)

5.4 Existence of a Minimizer: The Case p = 2

In the following we restrict our attention to minimization of functional (18), with p = 2
and Φ(u(x)) = |∇u(x)|2 on the space H1(Ω). For notational convenience we set α = λ

2σ2

and refer to the according functional FS as H1-functional.
The function

f(x, u,~v) := |~v|2 + α
|u− yδ(x)|2

|~v|2 .

is non-convex with respect to ~v. It is well-known that minimizers of such functionals have
to be considered in a generalized setting (see e.g. Dacorogna [22] Dacorogna & Marcellini
[23]). A generalized minimizer is obtained by minimizing the functional

F c
S(u) :=

∫

Ω

fc(x, u(x),∇u(x)) dx , (19)

where

fc(x, u,~v) :=

{

|~v|2 + α
|u−yδ(x)|2

|~v|2 if |~v|2 ≥ |u− yδ(x)|α1/2 ,

2|u− yδ(x)|α1/2 if |~v|2 ≤ |u− yδ(x)|α1/2

is the convex envelope of f . Similar to the proof of Theorem 4.1. in Dacorogna [22] we
can deduce the existence of a minimizer ũ ∈ H1(Ω) of this functional.

12
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5.4.1 Numerical Solution

In this subsection we consider numerical minimization of the functional F c
S defined in

(19). The derivates of fc with respect to u and ~v are:

Dufc(x, u,~v) =

{

2αu−yδ(x)
|~v|2 if |~v|2 > √

α|u− yδ(x)|
2
√
α

u−yδ(x)
|u−yδ(x)| if |~v|2 ≤ √

α|u− yδ(x)|

D~vfc(x, u,~v) =

{

2
(

1− α
(u−yδ(x))2

|~v|4

)

~v if |~v|2 > √
α|u− yδ(x)|

0 if |~v|2 ≤ √
α|u− yδ(x)|

Thus the minimizer û = argmin F c
S(u) solves the optimality condition

u(x)−yδ(x)
|∇u(x)|2 −∇ (a(x, u(x),∇u(x))∇u(x)) = 0 if |∇u(x)|2 > √

α|u(x)− yδ(x)|
u(x)−yδ(x)√
α|u(x)−yδ(x)| = 0 if |∇u(x)|2 ≤ √

α|u(x)− yδ(x)|
(20)

with

a(x, u,~v) :=
1

α
− |u− yδ(x)|2

|~v|4 .

In order to solve (20) we consider the solution of the steady state of the evolution
equation:

∂tu−∇ (a(·, u,∇u)∇u) = yδ−u
|∇u|2 if |∇u|2 > √

α|u− yδ|
∂tu = 1√

α
sign(yδ − u) if |∇u|2 ≤ √

α|u− yδ| (21)

For the numerical solution we discretize the equation with finite differences in space and
solve the resulting system of ordinary differential equations with an explicit Euler method.

5.5 Existence of a Minimizer: The Case p = 1

In the following we restrict our attention to minimization of functional (18) with p = 1
and Φ(u(x)) = |∇u(x)|. In this case the minimization problem has to be considered on
the space of functions of bounded variation. This further complicates the analysis, and
to the best of our knowledge no existence results for minimizers are available so far. The
numerical results outperform the method for p = 2 significantly (see Figure 3 below). The
reasons for this is two-fold: First, the investigated data is a piecewise step function and
thus of bounded variation, which is further reflected by the total variation regularization
term. Moreover, the fit-to-data functional in (18) is motivated from (16), which we think
to be more appropriate to the particular data than (17).

For minimizing the functional

FS(u) :=

∫

Ω

(u(x)− yδ(x))2

|∇u(x)| dx+ α

∫

Ω

|∇u(x)| dx

13
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Figure 1: Test image for evaluation of the
proposed filters

Figure 2: Distorted data obtained by random
distortion of the sampling points.

we convexify the function f(x, u,~v) := (u−yδ(x))2

|~v| + α|~v| with to ~v. The convexified func-

tional is minimized by solving the (formal) optimality condition (which is again a partial
differential equation) with the according evolution process up to a steady state. The
evolution process reads as follows:

∂tu−∇ ·
(

aBV (·, u,∇u) ∇u
|∇u|

)

= yδ−u
|∇u| if |∇u| > √

α|u− yδ|
∂tu = 1√

α
sign(yδ − u) if |∇u| ≤ √

α|u− yδ|
(22)

with

aBV (x, u,~v) :=
1

2

(

1

α
− |u− yδ(x)|2

|~v|2
)

.

5.6 Numerical Results

For evaluating the proposed filter schemes we depict an artificial test image of size
2562 as shown in Fig. 1. This test image is re-sampled with randomly distorted sampling
points (cf. Fig 2). The filtering procedure was performed after scaling the initial grey
value to values in [0, 1] and assuming pixel size 1.
Figs. 3 and 4 show the result of applying the H1-Filter and the BV-Filter resp. with
α = .1, τ = .01 and 10 iteration steps. Smoothing effects of the filtering schemes can be
noticed at the objects edges.
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Figure 3: Resulting image after applying the
H1-Filter with α = .1, τ = .01 and 10 iteration
steps of the explicit Euler method.

Figure 4: Resulting image after applying the
BV-Filter with α = .1, τ = .01 and 10 itera-
tion steps of the explicit scheme.
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Inc., Boston, MA, 1999.

[24] P. L. Davies and A. Kovac. Local extremes, runs, strings and multiresolution. Ann.
Statist., 29:1–65, 2001. With discussion and rejoinder by the authors.
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