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Chapter 1

Introduction

Various applications in image processing and computer vision are concerned with
the reconstruction or restoration of a signal from measured data. Examples are the
tasks of denoising, deblurring and inpainting, segmentation and labeling, the optical
flow problem and depth estimation from stereo.

From a mathematical point of view, these reconstruction tasks constitute inverse
problems, which for the considered applications are usually ill-posed. Consequently,
a direct inversion of the underlying operator is infeasible. To solve these inverse
problems, variational methods have proven favorable due to the fact that introducing
regularization leads to well-posed optimization problems. Besides ensuring well-
posedness, regularization in addition allows to incorporate a-priori knowledge (a
prior) on the unknown signal to be reconstructed. Such a prior has a strong impact
on the reconstruction quality and therefore, the choice of a meaningful regularization
approach is crucial.

Due to the fact that signals in image processing and computer vision typically
contain discontinuities, regularization with total variation (TV) respecting this prop-
erty has become standard in this field and serves as starting point for various gen-
eralizations. The focus of this thesis lies on adaptive total variation regularization,
where the prior is changing locally and, in particular, adjusts to instance-specific
structures. This adaptivity improves the reconstruction quality compared to non-
adaptive regularization.

One major contribution of this thesis is to provide a general model for adaptive
TV regularization. Our model also covers recent trends proposed in the literature,
such as to higher-order and non-local regularization. Consequently, our model com-
bines the benefits of advanced total variation approaches with the advantages of
adaptivity.

A second major contribution of this thesis is to present a novel concept for
solution-driven adaptivity, i.e. an adaptivity which is determined by the unknown
signal itself. In contrast, most adaptive approaches in the literature consider a data-
driven adaptivity, i.e. an adaptivity steered by the input data. Our approach has the
advantage that a-priori knowledge can be modeled in a more distinct way, which in
practical applications further improves the reconstruction quality. Solution-driven



CHAPTER 1. INTRODUCTION

adaptivity, however, raises a more involved mathematical optimization problem. In
this work, we provide a rigorous mathematical theory, which in particular answers
the question of existence and uniqueness.

Before going into more detail, we briefly give some background on variational
methods and TV regularization.

1.1 Variational Methods

Let us consider an inverse problem, where one is interested in finding an unknown
function u solving the equation

A(u) = f, (1.1)

with A being some linear/non-linear operator and function f representing some
measured data. Typically, the problem of finding u satisfying (1.1) is ill-posed in
the sense that a solution might not exists, might not be unique, or might not depend
continuously on the input data f [71].

Examples for inverse problems in image processing are the tasks of denoising,
deblurring and inpainting (i.e. the restoration of missing data, see e.g. [36]), where
u represents the undistorted image, and in computer vision the stereo [73] and the
optical flow problem [18], where u is a vector field encoding displacements in the
image plane.

The standard approach to solve inverse problems is to consider an optimization
problem of the form

min
u∈X
F(u), F(u) := S(u) + αR(u), (1.2)

where minimization over an appropriate function space X is considered.
The term S(u) in (1.2) is the data or fidelity term penalizing the difference

between A(u) and data f . The term R(u) is the regularization term. Introducing a
suitable regularization term, in particular, asserts that the minimization problem is
well-defined. The regularization parameter α > 0 steers the coupling between both
terms.

1.2 Regularization with TV

Regularization approaches commonly used in image processing and computer vision
are based on the total variation semi-norm [5, 55],

TV(u) := sup

{∫
u divϕ dx | ϕ ∈ C1

c (Ω,R
2), ‖ϕ(x)‖2 ≤ 1

}
, (1.3)

and several variants of it. Total variation was first introduced as regularizer for
the task of image denoising by Rudin, Osher and Fatemi [142]. One important
reason for TV to become the standard regularization method in these fields is that

2



1.3. GENERAL FRAMEWORK FOR ADAPTIVE TV REGULARIZATION

it allows a weak concept of differentiability (weaker than differentiability in Sobolev
spaces), which also includes piecewise constant functions with finitely many jumps.
Consequently, using

R(u) := αTV(u) (1.4)

as a regularizer allows discontinuities of u up to a certain degree. We remark that
for (weakly) differentiable functions, (1.4) simplifies to

R(u) :=
∫

Ω

α‖∇u(x)‖2 dL. (1.5)

Total variation has advantageous theoretical properties. Firstly, TV(u) is convex,
which eases both theoretical and numerical analysis of this approach. Secondly, the
space of functions of bounded total variation provides sufficient conditions to show
existence of a solution.

For the reasons mentioned above, TV serves as a well-suited starting point for
various generalizations, for example in view of higher-order models, non-local oper-
ators or adaptive TV regularization.

1.3 General Framework for Adaptive TV Regularization

Based on the standard TV regularization (1.4), we introduce a general model of
adaptive TV regularization of arbitrary order. To this end, we generalize (1.3) by
introducing arbitrary local constraints Dloc(x) ⊂ Rm (cf. [53]) and an arbitrary
differential operator D, i.e.

R(u) := sup

{∫
uDϕ dx | ϕ ∈ C∞

c (Ω,Rm), ϕ(x) ∈ Dloc(x)

}
, (1.6)

with the prerequisite that the sets Dloc(x) are closed, non-empty and convex.

The above generalization allows us to

1. locally vary the regularization strength (size of Dloc(x)),

2. introduce an anisotropic (or directional) regularization (shape of Dloc(x)),

3. consider higher-order total variation (operator D).

In particular, these adaptations enable us to promote the restoration of certain
structures contained in u (e.g. edges, corners in image data), provided that we have
some a-priori information about where to expect these image structures.

To model this a-priori information, we introduce an additional parameter v for
the regularization term, i.e R(u; v). As an example, we consider the model of
weighted total variation, where we set

α(x; v) := α0
1

1 + κ‖∇v(x)‖22
(1.7)

3



CHAPTER 1. INTRODUCTION

for some α0 > 0, κ ≥ 0 and function v as introduced above. The function (1.7)
was originally proposed by Perona and Malik [132] in the field of diffusion methods.
Based on the function α(x; v), we choose local constraint sets Dloc(x, v) = Bα(x;v)(0),
where Br(x) is the closed ball (w.r.t. the Euclidean norm) of radius r centered at
x. We observe that with these sets and D = div the regularization term (1.6) for
differentiable functions u simplifies to

R(u; v) =
∫

Ω

α(x; v)‖∇u(x)‖2 dx, (1.8)

(cf. (1.5)), i.e. we have introduced a locally varying regularization parameter α,
which changes depending on the absolute value of the gradient of v.

With the generalized regularization term R(u; v), the considered optimization
problem (1.2) becomes

min
u∈X
F(u; v), F(u; v) := S(u) +R(u; v). (1.9)

We discuss our generalized approach as well as different models of adaptivity in
detail in Chapter 4.

1.4 Related Work

Since this thesis focuses on adaptive TV regularization, we concentrate on work
related in this context.

We can roughly classify the proposed adaptive regularizers based on first-order
TV into four classes. The first class consists of approaches which estimate the scalar
regularization parameter α [106, 128, 184]. The second, and probably the largest
class of approaches, deals with a spatially adaptive regularization parameter α(x)
(e.g. (1.8) in the case of Sobolev functions) [43, 67, 76, 99, 100, 103, 109, 138, 141,
156, 158, 159, 170, 180]. In the related literature, those methods are referred to
as weighted TV, adaptive TV (ATV), and spatially adaptive TV (SATV). In this
thesis, we use the term weighted TV. The third class of approaches, see e.g. [25,
26, 42, 59, 185, 186], considers a spatially changing exponent q(x) for ‖∇u(x)‖2 in
(1.5), i.e.

∫
Ω
‖∇u(x)‖q(x) dx. Finally, there exists a class of TV regularizers, which

penalize the image gradient depending on its orientation. We refer to such methods
as anisotropic methods. Sometimes these methods are also termed directional TV
regularization. Such anisotropic approaches have been proposed e.g. in [7, 14, 22,
54, 68, 99, 100, 103, 90, 91, 152, 154].

Following the recent development towards higher-order total variation approach-
es (see e.g.[28, 153]), also adaptive higher-order TV methods have been proposed
[38, 80, 94, 98]. Moreover, we remark that non-local total variation [65, 84] by its
nature is adaptive with respect to the data. Besides being applied in the field of
image restoration, adaptive TV has been used to regularize a broad set of problems.
Among these, we mention optical flow estimation [172, 178], de-interlacing [82],

4



1.5. FROM DATA-DRIVEN TO SOLUTION-DRIVEN ADAPTIVITY

compressed imaging [40], segmentation and labeling [93, 96, 125, 143, 183] and
sensor fusion [118].

The approaches mentioned above use different models for determining meaningful
structures in the data. We summarize the most common ones. In case of weighted
TV, several approaches use model (1.7) with v being the pre-smoothed input data
[43, 109, 170]. Other approaches, in particular several anisotropic models, build on
the structure tensor [57] evaluated on either the input data f , a current estimate of
u, or the unknown u itself [54, 68, 90, 91, 99, 100, 103, 141, 152, 154, 180]. Due to
the use of the structure tensor, we observe a relationship to the anisotropic diffusion
approach by Weickert [175].

We emphasize that a wide range of the approaches mentioned above, e.g. the
weighted TV approaches [43, 76, 80, 109, 141, 170, 180], the anisotropic TV ap-
proaches [14, 22, 53, 99, 100, 103, 152, 154] as well as higher-order and non-local
TV models [65, 84, 98], are covered by our general framework (1.6) by choosing
appropriate local constraint set Dloc and differential operators D.

1.5 From Data-Driven to Solution-Driven Adaptivity

In the following, we give an overview of the proposed solution-driven strategy. To
this end, let us focus on the function v determining the adaptivity of R(u; v). With-
out loss of generality we make the assumption that the function v is of the same
kind as f or u (e.g. that u, v, f represent images).

We distinguish between two different cases for the choice of v. The first one
is data-driven adaptivity, where we choose v = f , i.e. structures in f (e.g. edges,
corners, slopes) are used to steer the adaptivity. In the second case, which is solution-
driven adaptivity, we choose v = u, i.e. structures in the unknown u determine the
adaptivity.

The latter case has the advantage that the adaptivity is determined directly
by the reconstructed function and thus, is less affected by distortions present in
the input data. Consequently, no pre-processing for removing these distortions is
required. We will see in the discussion of various applications, that, in general,
solution-driven adaptivity provides a higher reconstruction quality than data-driven
adaptivity. These benefits come along with a more complex setting from a mathe-
matical point of view. We therefore provide rigorous mathematical theory for this
new ansatz.

Before turning to the theory for solution-driven adaptivity, let us first present
theoretical and practical properties of both approaches in more detail.

Data-Driven Adaptivity

With the choice v = f , the local constraint sets Dloc(x; v) in (1.6) become fixed.
Then, provided that these sets are convex, a convex minimization problem is ob-
tained. Theory on existence and uniqueness of minimizers, which we present in
Chapter 4, therefore is analogously to the non-adaptive case.

5
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The convexity of F(u) and the availability of efficient numerical solvers might
be the reason why data-driven adaptivity is the most common form of adaptivity
used in the literature. From a practical point of view, however, the data-driven
approaches face the problem that f might be corrupted e.g. by noise, and important
image structures might be missing in f = A(u) in case of A 6= Id.

We present the general framework of data-driven adaptive TV regularization in
detail in Chapter 4 along with specific models of adaptivity, that allow the restora-
tion of prominent image structures in the data such as image edges, corners and
intensity slopes.

Solution-Driven Adaptivity

Let us first consider the direct approach, which addresses the minimization problem

min
u∈X
F(u; u). (1.10)

We remark that convexity of problem (1.10) is in general not guaranteed. For the
models of adaptivity we study in this thesis (cf. Chapter 4), we will see that the direct
solution-driven approach (1.10) would always result in a non-convex optimization
problem. An example is choosing v = u in (1.7). A consequence of the non-convexity
is, that the direct approach leads to problems, when it comes to showing existence
and uniqueness and providing convergent numerical methods.

To circumvent the difficulties with non-convex minimization problems, we can
think of relaxing the problem. By relaxation, the minimization problem becomes
convex, while the set of minimizers in general is enlarged. We will describe a class
of relaxation methods in Chapter 5. For the case of adaptive total variation regu-
larization, however, it turns out that relaxation is not a suitable strategy, since the
optimization of the relaxed functional is an open issue.

We therefore choose a different strategy, in which we pose the problem of solution-
driven adaptive regularization in terms of a fixed point approach as detailed next.
As a starting point, we consider an arbitrary u0 ∈ X and the mapping

u0 7→ T (u0) := argmin
u∈X

S(u) +R(u; u0). (1.11)

Having u0 fixed, existence theory from the data-driven case applies and thus, opera-
tor T is well-defined. Moreover, assuming that the data term S(u) is strictly convex,
T is single-valued (a property which is required to define adaptivity in a meaningful
way).

We then search for a fixed point u∗ of operator T . Please note that u∗ is the
solution of

min
u∈X
S(u) +R(u; u∗), (1.12)

i.e. the adaptivity of R is determined by u∗. Thus, our ansatz provides a solution-
driven adaptivity.

6



1.5. FROM DATA-DRIVEN TO SOLUTION-DRIVEN ADAPTIVITY

It has to be remarked that the problem (1.10) and the fixed point problem are not
equivalent in general. However, we observe that the fixed point approach, depending
on the mapping v 7→ R(·; v), mimics a non-convex behavior (cf. Section 8.1).

Considering related work, we find that only a few solution-driven regulariza-
tion approaches have been proposed [7, 54, 90, 138]. The approaches proposed by
Lefkimmiatis et al. [90] based on the structure tensor and Åström et al. [7] based
on the gradient energy tensor consider solution-driven adaptivity in a direct way. In
both cases, the authors have shown convexity of their regularizers. Both approaches,
however, face the problem that they are only defined on function spaces of sufficient
regularity, i.e. Sobolev spaces, while the generalization to the function space BV as
a suitable space for proving existence of a minimizer is unclear.

The methods by Estellers et al. [54] and Rojas el al. [138] propose an iterative
update of the adaptivity. Therefore, these can be regarded as the most related ones
to our work. However, theory on the existence of fixed points for these approaches
is not provided. In contrast, for the approach presented here, we provide theory for
fixed points in a suitable function space.

Theory for Solution-Driven Adaptivity

For the operator T introduced above, we provide existence theory for fixed points
both in the continuous and discrete setting, cf. Sections 6.3 and 6.4, respectively.

In the continuous setting, we build on our previous work [101]. The main in-
gredient for proving existence is the Himmelberg fixed point theorem for compact,
weakly sequentially upper semi-continuous operators [3, 74].

In the discrete setting, we observe that the problem of finding a fixed point of
operator T is equivalent to solving the quasi-variational inequality problem (QVIP)

find p∗ ∈ D(p∗) such that

〈G(p∗), p− p∗〉 ≥ 0 for all p ∈ D(p∗), (1.13)

where G comprises the gradient of the dual objective of u 7→ F(u; u∗) and D is a
constraint set related to the local constraint sets Dloc(x, u∗), but now depending on
the unknown p∗. For details, we refer to Chapter 6.

We show that under sufficient conditions a solution p∗ of (1.13) exists, from
which existence of a fixed point u∗ of T follows. Here, we can make use of existence
theory for QVIPs from the literature, see e.g. [37, 122, 127].

In view of uniqueness, QVIP (1.13) exhibits difficulties due to missing strong
monotonicity of the operator G. Consequently, theory from the literature (see
e.g. [122]) on the uniqueness of p∗ is not applicable. However, we can close this
gap and show uniqueness of u∗ under sufficient assumptions. Both existence and
uniqueness theory is described in detail in Section 6.4. This extends our previous
work [99, 100, 103].

Our theoretical results show that our fixed point strategy is not just an ad hoc
approach, but is supported by rigorous mathematical theory.

7



CHAPTER 1. INTRODUCTION

Finally, we remark that our concept of solution-driven adaptivity can be applied
to various existing data-driven approaches. In particular, the adaptive methods in
[14, 22, 43, 53, 76, 80, 109, 141, 152, 154, 170, 180] can directly be transfered into
solution-driven methods by our approach. In these cases, the theory presented in
Chapter 6 applies.

1.6 Contributions

We briefly summarize the contributions of our work:

1. We provide a general model for adaptive TV regularization of arbitrary order,
which covers various data-driven approaches proposed in the literature. For
the general model, we provide theory on existence and uniqueness.

2. We propose a novel concept of solution-driven adaptivity, which is supported
by rigorous mathematical theory both in the continuous and discrete setting.
Our concept can be directly applied to various data-driven approaches existing
in the literature.

3. We discuss several models of adaptivity, which can be used to preserve promi-
nent image structures such as edges, corners and slopes when reconstructing
the unknown function u. Each model can be applied in a data-driven or a
solution-driven way.

4. We provide a numerical method for solving the solution-driven regularization
approaches. This algorithm is supported by convergence theory.

5. We present various applications in the field of image processing and computer
vision in which adaptive regularization is used. These applications clearly
demonstrate that adaptive regularization is preferable over non-adaptive reg-
ularization. Moreover, we show applications where the solution-driven variants
clearly outperform the data-driven variants.

1.7 Organization

Let us give a short overview of the organization of this thesis: We start with an
introduction to TV regularization in Chapter 2. Chapter 3 provides background
on variational methods and convex optimization. In Chapter 4, we focus on data-
driven adaptive TV regularization, which results in convex minimization problems.
We discuss our general framework for adaptivity and provide existence and unique-
ness results. Moreover, we discuss models to steer adaptivity and various examples of
adaptive TV regularization. Chapter 5 recalls relaxation approaches in W 1,p(Ω) and
BV (Ω), which in certain cases can serve as an alternative to tackle non-convex min-
imization problems. In Chapter 6, we present our fixed point strategy for solution-
driven adaptive regularization. This strategy enables us to transfer the data-driven

8
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adaptive approaches from Chapter 4 into solution-driven approaches. We stress that
in the context of adaptive regularization, this strategy is preferable over relaxation
methods. In Chapter 7, we consider numerical approaches for convex, non-convex,
and fixed point problems. In particular, we present a new algorithm for solving
QVIPs with non-strongly monotone operators (Section 7.2) and show convergence.
Moreover, we provide a Newton-like algorithm for solving non-convex optimization
problems on Lie groups (Section 7.3). Finally, in Chapter 8, we discuss applica-
tions using the framework presented in Chapters 4 to 6 and the numerical methods
from Chapter 7. The considered applications comprise image restoration (denois-
ing, deblurring, inpainting), displacement regularization (i.e. correcting errors in
the location of sampling points), denoising and fusion of time-of-flight depth maps,
upsampling of color images and, estimation of scene and egomotion from image se-
quences in an automotive environment. We conclude this thesis with a discussion
in Chapter 9.

9
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Chapter 2

Introduction to Total Variation
Regularization

2.1 Notation

Throughout this chapter, let Ω ⊂ R2 be an open bounded domain with Lipschitz-
boundary. The integral of some f over Ω is denoted by

∫
Ω
f dL, where we omit the

dependency of f on (x, y). The (weak) derivatives of f are denoted by ∂xf and ∂yf .

2.2 Image Denoising

In the process of recording image data, it is inevitable that the recording is distorted
by random errors, which commonly is referred to as noise. This process is typically
described in a discrete setting. When the signal is recorded at pre-defined sampling
points xi ∈ Ω, i = 1, . . . , n, the original signal u(xi) is distorted by a random process.
For the moment, we concentrate on grayscale images and the model of an additive
distortion, such that the recorded data f(xi) ∈ R are given as

f(xi) := u(xi) + v(xi), (2.1)

where v(xi) are the realizations of some random variables. We define ui := u(xi)
and analogously for v, f . (Please note that we denote the resulting vectors also by
u, v, f . In the following, the respective setting will be clear from the context.)

Another often considered noise model is the model of multiplicative noise (see
e.g. [106, 155] and the reference therein), which via the log-function can be trans-
formed into an additive model.

The standard model for additive noise is, that the random process is an inde-
pendent and identically distributed (i.i.d.) Gaussian process with zero mean and
standard deviation σ > 0, i.e.

v(xi) ∼ N (0, σ) (2.2)
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independent from the location xi. In order to retrieve a noise-free approximation u
of the recorded data f , variational methods motivated by the statistical approach
of maximum-a-posteriori (MAP) estimation [23, 63] can be used:

u := argmin
u∈Rn

1

2
‖u− f‖22 +R(u), (2.3)

where the first term is motivated by the Gaussian noise model and R : Rn → R≥0 is
a functional obtained from an a-priori assumption on the distribution of the signal
u. We refer to [23, 97] for further details.

The above ansatz can also be considered in a continuous setting, where u, v and
f = u+v are assumed to be functions in L2(Ω). The variational approach introduced
above then reads

u := argmin
u∈X

1

2

∫

Ω

(u− f)2 dL+R(u), (2.4)

where X ⊆ L2(Ω) is some suitable function space on which R(u) : X → R≥0 is
well-defined. We remark that in the continuous setting a mathematically rigorous
definition of the noise process generating v is non-trivial. However, describing such
a model is out of the scope of this thesis.

The problem of denoising can also be studied from the viewpoint of the theory
of inverse problems [148], where the process of generating noisy data f from given
u is referred to as the forward and the problem of estimation u from given f as the
inverse problem.

In this view, we refer to the first term in (2.4) as the data term, for which we
introduce the notation

S(u) := 1

2

∫

Ω

(u− f)2 dL =
1

2
‖u− f‖L2 . (2.5)

The term R in (2.4) is referred to as the regularization term.

2.3 The ROF Functional

For the task of image denoising, Rudin, Osher and Fatemi [142] proposed in 1992 a
variational approach where the total variation (TV) semi-norm is used as regular-
ization term. The functional to be minimized, which is commonly referred to as the
ROF functional, reads follows: for given f ∈ L2(Ω), α > 0 let

F(u) := 1

2
‖u− f‖2L2 + αTV(u), (2.6)

where

TV(u) := sup

{∫

Ω

u divϕ | ϕ ∈ C1
c (Ω,R

d), ‖ϕ(x)‖2 ≤ 1

}
(2.7)

12
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is the total variation semi-norm [55, 148]. We recall that (2.6) takes the classical
form of a variation approach to solve the inverse problem (cf. Chapter 1) of retriev-
ing u from f , where S(u) := 1

2
‖u − f‖2L2 is the data term and αTV(u) serves as

regularization term R(u). Both terms are coupled by parameter α, which is referred
to as the regularization strength or regularization parameter. Since the introduction
of the ROF functional TV has become very popular as regularization term also for
other inverse problems in image processing and computer vision.

Let us discuss the properties of the functional in (2.6). First, we determine an
appropriate function space on which this functional well defined. We start with the
regularization term αTV(u) in (2.6). Please note that in the definition of TV(u) in
(2.7) the integral is well-defined for functions u ∈ L1(Ω); however, the supremum
might take the value +∞. Let us therefore consider the subset (subspace) of L1(Ω),
for which TV(u) is finite:

Definition 2.1. [Space BV (Ω)] Let u ∈ L1(Ω) and let the total variation of u,
TV(u) be defined as in (2.7). We call the space of functions

BV (Ω) := {u ∈ L1(Ω) | TV(u) <∞} (2.8)

the space of functions of bounded variation.

Equipped with the norm ‖u‖BV := ‖u‖L1 + TV(u) the space BV (Ω) becomes a
Banach space.

Now, let us turn to the data term in (2.6). Please note that in the case Ω ⊂ R2,
on which we focus here, L2(Ω) is continuously embedded in BV (Ω) and thus (2.6)
is finite on BV (Ω). Consequently, the appropriate space to minimize (2.6) over is
BV (Ω):

min
u∈BV (Ω

F(u) := min
u∈L2

1

2
‖u− f‖2L2 + αTV(u). (2.9)

One might think of further restricting the functional to the space W 1,1(Ω) ⊂
BV (Ω), on which

TV(u) =

∫

Ω

‖∇u‖2 dL (2.10)

(see also Section 2.7 below). However, this function space does not have the required
properties to show existence of a minimizer.

The ROF functional has the properties of being non-negative, proper, i.e. F(u) <
∞ for at least one element u ∈ BV (Ω) and strictly convex. The non-negativity
follows from the fact that both data term and regularization term are non-negative,
where TV(u) ≥ 0 follows from the fact that p ≡ 0 belongs to the set of functions
considered on the right hand side of (2.7). Properness follows e.g. by choosing u ≡ 0.
Finally, since TV(u) is the supremum over convex functionals, it is also convex. The
strict convexity of S(u) then implies the strict convexity of the ROF functional.

It remains to discuss the issue of existence of a unique minimizer. This will be
part of the next section.

13
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2.4 Theory

We briefly recall the main steps to prove the existence of a minimizer of

min
u∈BV (Ω)

F(u) := min
u∈BV (Ω)

1

2
‖u− f‖2L2 + αTV(u). (2.11)

Uniqueness then follows from the strict convexity of F(u).
The strategy to prove existence is as follows (see e.g. [49]). We consider a mini-

mizing sequence (u(k))k, i.e. F(u(k))→ infu∈BV (Ω)F(u). After showing boundedness
of this sequence in the norm ‖·‖BV , a subsequence, also denoted by (u(k))k has to be
found, which converges to some u ∈ BV (Ω) in a weak sense. Here, we require the
property of BV (Ω), that bounded sets are pre-compact with respect to this weak
convergence. (This requirement is the reason why it does not suffice to consider
minimization of F over W 1,1(Ω).) Finally, it has to be shown that u is a minimizer
of F(u):

F(u) !
= inf

k
F(u(k)) = inf

u∈BV (Ω)
F(u), (2.12)

where the second equality holds due to the fact that we chose a minimizing sequence.
We address each step in a little more detail:

Boundedness Since F(0) = 1
2
‖f‖2L2 =: C, we can assume without loss of gener-

ality that F(u(k)) ≤ C for all k ∈ N. For arbitrary u we find from

‖u‖L2 ≤ ‖u− f‖L2 + ‖f‖L2 ≤
√

2F(u) +
√
2C (2.13)

and

TV(u) ≤ 1

α
F(u), (2.14)

that

‖u‖BV (Ω) ≤
√
2F(u) +

√
2C +

1

α
F(u) (2.15)

(coercivity of F(u)). It follows, that

‖u(k)‖BV (Ω) ≤ 2
√
2C +

C

α
. (2.16)

Pre-compactness of bounded sets We consider the following weak convergence
in BV (Ω):

Definition 2.2. [Weak-∗-convergence] A sequence (uk)k weakly ∗ converges to u ∈
BV (Ω), denoted by u(k) ⇀ u, if and only if ‖uk − u‖L1 → 0 and supk TV (uk) <∞.

Furthermore, we consider the weak topology induced by this weak convergence. It
can be shown that each bounded set in BV is pre-compact with respect to this weak
topology [55].

Since (u(k))k is bounded, there exists some u ∈ BV (Ω), such that u(k) ∗
⇀ u. This

implies also that u ∈ L2(Ω) and u(k) ⇀ u in L2(Ω).

14
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Minimizing property of u We have to show that

F(u) ≤ inf
k
F(u(k)). (2.17)

Firstly, we observe that S(u) is weakly lower semi-continuous in L2(Ω), i.e.

S(u) ≤ lim
uk⇀u

S(uk) (2.18)

for sequences (uk)k weakly converging to u in L2(Ω), see Lemma 2.3 below. Secondly,
the TV functional is weakly ∗ lower semi-continuous (see e.g. [55, Theorem 1 in
Section 5.2.]), i.e.

TV(u) ≤ lim inf
u(k) ∗

⇀u

TV(u(k)). (2.19)

Combining (2.18) and (2.19) shows (2.17). In our case, where (u(k))k is a minimizing
sequence, the right hand side of (2.17) equals infu∈BV (Ω)F(u). Thus, it follows
immediately that u is a minimizer of F(u).
Lemma 2.3. Consider f ∈ L2(Ω) fixed. The functional S(u) := 1

2
‖u− f‖2L2 defined

on L2(Ω) is weakly lower semi-continuous.

Proof. We show the lower semi-continuity of S in L2(Ω), which, since S is convex,
induces its weak lower semi-continuity by Theorem 1.2 in [49]. To this end, let
(u(k))k, u ∈ L2(Ω), such that u(k) → u. In particular, (u(k))k is bounded in L2(Ω).
Then,

S(u)− S(u(k)) =
1

2

∫

Ω

(u− f)2 − (u(k) − f)2 dL

≤ 1

2

∫

Ω

|(u(k) − u)(u(k) + u− 2f)| dL

≤ 1

2
‖u(k) − u‖L2‖u(k) + u− 2f‖L2

≤ 1

2
‖u(k) − u‖L2(‖u(k)‖L2 + ‖u‖L2 + 2‖f‖L2).

(2.20)

Since (‖u(k)‖L2 + ‖u‖L2 + 2‖f‖L2) is bounded and ‖u(k) − u‖L2 → 0, it follows that

lim inf
k→∞

S(u)− S(u(k)) ≤ 0. (2.21)

2.5 Numerics

Concerning the numerical optimization of F , one particular issue is the non-smooth-
ness of the regularization term. Some algorithms proposed in the literature circum-
vent this problem by smoothing the regularization term, i.e. they consider

TVε(u) :=

∫

Ω

√
(∂xu)2 + (∂yu)2 + ε2 dL (2.22)
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Algorithm 1: A primal-dual algorithm for minimizing the ROF functional.

Input: N ≥ 1, data f , initial guess u(0) = f , ũ(0) = u, p(0) ∈ R2n

Output: u = u(N)

Let τ, σ > 0 such that τσ ≤ 1
‖L‖2

begin
for i = 1, . . . , N do

p(i) ← ΠD(p(i−1) + L⊤ũi−1) // update dual variable

u(i) ← 1
1+τ

(u(i) − τLp(i) + τf) // update primal variable

ũ(i) ← 2u(i) − u(i−1) // extrapolation step

for some ε > 0, and solve the Euler-Lagrange equation for the smoothed minimiza-
tion problem in a semi-implicit scheme. In order to avoid a blurring of the result, a
small ε has to be used.

An alternative, which became popular in the recent years, is to make use of the
formulation of the total variation via the supremum of linear functions (cf. (2.7))
and to tackle the saddle point problem

min
u∈BV (Ω)

1

2
‖u− f‖2L2 + sup

p∈C1(Ω;R2),‖p(x)‖2≤α

∫

Ω

div p u dL. (2.23)

In the discrete setting (2.23) turns into

min
u∈Rn

1

2
‖u− f‖22 + sup

p∈D
(Lp)⊤u, (2.24)

where u, f ∈ Rn are vector representations of the functions u and f on a regular grid
(e.g. ordered lexicographically), L : R2n → Rn is a discretization of the divergence
operator and

D := {p = (px, py) ∈ R2n | ∀i = 1, . . . , n :
√

(pxi )
2 + (pyi )

2 ≤ α}. (2.25)

Since D is a closed and convex set, the projection ΠD(p) of p ∈ R2n onto this set is
well-defined.

Remark 2.4. For the discretization we choose left-sided finite differences together
with homogeneous Dirichlet boundary conditions, such that G⊤ := −L⊤ is a dis-
cretization of the gradient with right-sided finite differences and homogeneous Neu-
mann boundary conditions. Moreover, note that

sup
p∈D

(Lp)⊤u = sup
p∈D

p⊤Gu (2.26)

as long as the set D is point-symmetric with respect to 0.
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We briefly recall one basic algorithm, see Algorithm 1, to numerically solve the
saddle point problem (2.24). This algorithm is taken from [36].

The algorithm consist of iterated updates of the dual variable p and the primal
variable u, combined with an extrapolation step. The update of p involves the
projection ΠD(p) of p = (px, py) ∈ R2n onto the convex set D in (2.25). This
projection can be performed for each index i independently by scaling (pxi , p

y
i ) by a

factor min(α/‖(pxi , pyi )‖, 1). Moreover, we remark that ‖L‖2 ≤ 8 (cf. e.g. [34]). This
bound is sharp in the sense that it is attained in the limit for increasing image size.

A convergence proof for Algorithm 1 can be found in [36]. We will consider more
sophisticated algorithms, i.e. algorithms which are faster and have a-posteriori error
estimates, in Chapter 7.

2.6 Drawbacks of TV Regularization

There exist three well-known drawbacks of using TV for regularization . The first
one is the loss of contrast, which is caused by the fact that any kind of slope or jump
in the data is penalized, which from an optimization point of view favors u < f at
local maxima of f and u > f at local minima of f . We refer to Fig. 2.1 for an
example.

The second drawback is the so called stair-casing effect. To understand this
effect, we consider a one-dimensional example. Let f : [0, 1]→ R be continuous and
monotonically increasing. The total variation of f then is given by maxx∈[0,1] f(x)−
minx∈[0,1] f(x) = f(1)−f(0) independent from its values in the interior of [0, 1]. The
solution u to the ROF functional with this particular f – away from the boundary
– will stick to f since this minimizes the data term among all monotonic functions.
At the boundary we observe the already mentioned loss of contrast. In a similar
manner, for any noisy data f , the solution u of the ROF functional will preserve
monotonic structures induced by the noise. This in particular becomes obvious in
regions where the original noise-free data is affine, see Fig. 2.2, bottom row.

The third drawback is the over-smoothing of image textures. This effect is caused
by the fact that textures usually have a high total variation, which is significantly
reduced when TV is used as a regularization term. We refer to Fig. 2.3 for an
illustration. To overcome this shortcoming, non-local TV variants as well as struc-
ture/texture decomposition have been proposed. These will be discussed below.

2.7 Measure-theoretic interpretation of TV

In the case that u ∈ W 1,1(Ω), we find by the Gauss Green formula (cf. [148, Corollary
9.32]) that

TV(u) =

∫

Ω

‖∇u‖ dL, (2.27)
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(a) (b) (c)

Figure 2.1: Drawbacks of TV regularization – loss of contrast. We illustrate the
loss of contrast occurring with TV regularization. The input data (a) are piecewise
constant without noise. The smoothed image (b) obtained from minimizing the
ROF functional resembles this piecewise structure, but with a loss of contrast. This
can in particular be observed when comparing the profiles (c) of input (black line)
and result (blue line) along e.g. a horizontal line through the image center.

(a) (b) (c)

Figure 2.2: Drawbacks of TV regularization – stair-casing. This example illustrates
the stair-casing effect of TV regularization. To this end we consider affine noise-
free data distorted by additive Gaussian noise (a). The result (b) of minimizing
the ROF functional shows the well-known stair-casing effect of TV regularization.
The original affine image is reconstructed as a monotonic, but not affine structure.
Investigating a horizontal cross-section (c), we also observe this stair-casing effect
(blue line) together with a loss of contrast at the image borders (increased difference
between the result and the original noise-free data (green line)).
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(a) (b) (c)

Figure 2.3: Drawbacks of TV regularization – over-smoothing of textured regions.
We illustrate this effect by means of the face region of the Barbara test image (a).
To smooth a noisy version (b) we minimize the ROF functional in (2.6). The result,
depicted in (c) shows the over-smoothing of the stripes of Barbara’s scarf.

i.e. the total variation is linked to the weak derivative of u. In the more general case
u ∈ BV (Ω), it can be shown that the weak derivatives of u are Radon measures.

To this end, we consider signed Radon measures ν. Such a signed measure is
obtained by combining an unsigned Radon measure µ with a signed density σ (see
[55, Section 1.3] for details on σ) by setting

ν(K) :=

∫

K

σ dµ (2.28)

for all compact sets K ⊆ Rn. Borrowing the notation from [55], we shortly write
ν = µ σ. Then, it can be shown that there exists a signed Radon measure Du =
|Du| σ on Ω, such that for every p ∈ C1

c (Ω;R
d)

∫

Ω

u div p dL = −
∫

Ω

p dDu = −
∫

Ω

pσ d|Du|, (2.29)

see e.g. [55, Section 5.1]. We can interpret the measure |Du| σi, where σi for i = 1, 2
is the i-th component of σ, as weak directional derivative of u, since

∫

Ω

u∂ip dL = −
∫

Ω

pσi d |Du| (2.30)

for every p ∈ C1
c (Ω,R).

The signed measure Du can be decomposed into a part Duac, which is absolutely
continuous with respect to the d-dimensional Lebesgue measure Ld and a part Dus

singular to Ld [55]. An analogous decomposition exists for the positive measure
|Du|. (We require the above decomposition in particular for our considerations in
Chapter 5).
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2.8 Variants of TV Regularization

In the following, we consider a generalized data model, i.e. we assume that f =
M(u)+ v with some operator M : X → Lp(Ω), data f ∈ Lp(Ω), p = 1, 2 and a noise
component v. The data term then becomes S(u) := 1

2
‖M(u)− f‖pLp .

We now consider some important variants of TV regularization. Hereby, we
concentrate on non-adaptive variants while adaptive TV regularization will be part
of the next chapter.

2.8.1 Anisotropic TV Regularization

Besides the TV-norm as defined in (2.7), one can think of anisotropic versions of TV.
Here, we refer to anisotropy as the property of the regularization term to penalize
the gradient ∇u of u with a regularization strength depending on the orientation of
∇u. One often used variant is

TVa(u) = sup{
∫

Ω

u(∂xφ1) dL | φ1 ∈ C∞
c (Ω), |φ1(x)| ≤ 1} (2.31)

+ sup{
∫

Ω

u(∂yφ2) dL | φ2 ∈ C∞
c (Ω), |φ2(x)| ≤ 1}. (2.32)

This semi-norm shows the strongest penalization for gradients in diagonal direc-
tion and weakest for horizontal/vertically oriented gradients (comparing gradients
of equal norm). As a consequence, when TVa is used as a regularization term, the
reconstruction of horizontal and vertical edges is favored. When in the literature the
term anisotropic TV is used, then often TVa is meant. However, we will consider
various examples of anisotropic TV models in Chapters 4 and 6 and refer to all
these models as anisotropic TV models. In particular, most of these models will be
adaptive to the image content in order to improve the preservation/restoration of
certain image structures.

2.8.2 Vector-valued TV

The definition of the TV-semi-norm extents naturally to vector-valued function: For
u : Ω→ Rm, u = (u1, . . . , um), let

TV(u) :=

sup

{∫

Ω

m∑

i=1

ui(∂xpi,1 + ∂ypi,2) dL | p ∈ C1
c (Ω,R

m×2), ‖p(x)‖2 ≤ 1

}
, (2.33)

which for functions u ∈ W 1,1(Ω,Rm) becomes TV(u) =
∫
Ω
‖∇u‖F dL, where ‖ · ‖F

denotes the Frobenius norm. An alternative TV model considers in (2.33) the local
constraint ‖(pi,1(x), pi,2(x))‖2 ≤ 1 instead of ‖p(x)‖2 ≤ 1, which results in TV(u) =∑m

i=1 TV (ui).

20



2.8. VARIANTS OF TV REGULARIZATION

Depending on the application, it might be suitable to consider other variants of
vector-valued TV. In particular for color images several models have been proposed
in the literature, see e.g. [24, 29, 39], in order to cope with the specific human
perception of edges in colored pictures.

2.8.3 Higher-Order TV

A recent trend is to consider total variation of higher-order, see e.g, [28, 35, 94,
130, 129, 147, 153]. In the following, we concentrate on regularization terms which
include both first- and second-order total variation semi-norms. For the sake of
brevity, we refer to such a regularization as second-order TV.

The straightforward model is based on the following definition:

Definition 2.5 (BV 2(Ω)). Let u ∈ W 1,1(Ω). We define the space BV 2(Ω) as the
space of functions u ∈ W 1,1(Ω), for which ∂xu, ∂yu ∈ BV (Ω). We define the second-
order total variation as

TV2(Ω) = sup{
∫

Ω

u div2 ϕ | p ∈ C1
c (Ω,R

4), ϕ(x) ∈ B1(0)}, (2.34)

where
div2 ϕ = ∂xxϕ1 + ∂xyϕ2 + ∂yxϕ2 + ∂yyϕ2 (2.35)

for p = (p1, . . . , pn)
⊤ ∈ C1

c (Ω,R
4).

Equipped with the norm ‖f‖BV 2 := ‖f‖W 1,1+TV2(u) the space BV 2(Ω) becomes
a Banach space. We remark that there is an alternative definition of TV2 via Radon
measures, cf. [148, 9.63 and 9.81].

Based on this definition, a second-order TV regularization approach for denoising
is

min
u∈L2(Ω)∩BV 2(Ω)

1

2
‖u− f‖2L2 + αTV(u) + β TV2(u). (2.36)

with α, β ≥ 0, cf. [147]. We note that in order to obtain a coercive functional, it is
necessary to include both first- and second-order TV, i.e. α > 0 should be assumed.

Besides this straightforward model, other TV variants of second order have been
proposed in the literature. One frequently used approach is the Total General Vari-
ation (TGV) proposed by Bredies, Pock and Kunisch [28], which generalizes total
variation up to an arbitrary order p. In the case p = 2 TGV is defined as

TGV 2(u) =

sup
{∫

Ω

u d̃iv
2
ϕ dx | ϕ ∈ Ck

c (Ω, Sym
2(R2)), ‖ϕ‖∞ ≤ α0; ‖d̃ivϕ‖∞ ≤ α1

}
, (2.37)

where Sym2(R2) is the space of symmetric matrices (2-tensors) and

(d̃iv ϕ)i :=
2∑

j=1

∂jϕij, d̃iv
2
ϕ :=

2∑

i=1

(
∂i∂iξii +

∑

i<j

2∂i∂jϕ

)
. (2.38)
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For details on Total Generalized Variation, including higher order models, we refer
to [28].

The third model we are to mention here is based on infimal convolution (IC)
[35, 153]. The corresponding optimization problem for denoising reads

min
u∈BV (Ω),v∈BV 2(Ω)

1

2
‖u+ v − f‖2 + α

∫

Ω

|∇u| dL+ β TV(∇v). (2.39)

where TV(∇v) is the total variation of the vector-valued function ∇v ∈ W 1,1(Ω).
Please observe that the TV models considered in this section always comprise

both first- and second-order TV terms. For the compactness of presentation, we
refer to these models as second-order TV in the sense that the regularization is up
to the this order.

2.8.4 Nonlocal TV Regularization

One alternative to avoid the drawback of TV regularization to over-smooth image
textures are non-local variants of total variation, see e.g. [64, 65, 84]. The core idea
behind non-local TV regularization is, that for each pair of pixels i, j a weight wij

between 0 and 1 is assigned, which describes how closely related the image content
at both pixels is (with a higher value indicating a closer relation). One possibility
to derive wij is by comparing image patches centered at positions i and j and to
utilize a (normalized) patch distance measure.

The two most often used non-local variants of TV are given by

TVnon-local(u) :=
∑

i,j

wij|ui − uj| (2.40)

and

TVnon-local(u) :=
∑

i

√∑

j

w2
ij|ui − uj|2, (2.41)

respectively. A corresponding continuous representation can be obtained by replac-
ing indices i and j by image coordinates x and y and the sums in (2.40) and (2.41)
by integrals over these coordinates. In the same way, non-local gradient and diver-
gence operators can be defined. In practical applications, it is quite costly from a
numerical point of view to consider all possible pairs wij. Therefore, often only pixel
pairs up to a maximal distance are considered.

An approach, which combines non-local with higher-order regularization has been
proposed in [95].

2.8.5 Structure-Texture Decomposition

A second alternative to avoid over-smooth image textures is to introduce a de-
composition of a given image f into a structure (cartoon) component u, a texture
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component v and a noise component η. To this end, a variational approach of the
form

min
u∈BV (Ω),v∈V

1

p
‖u+ v − f‖pLp + TV(u) +Rtexture(v) (2.42)

can be considered, where the structural component of u is penalized by the TV semi-
norm, and for the textural component a suitable function space v and a suitable
regularization term Rtexture have to be chosen.

In the literature, several regularization terms have been proposed for this task.
We exemplarily recall two regularizers based on the G-norm proposed by Meyer[115],

‖v‖G := inf

{∥∥∥∥
√

g21(x) + g22(x)

∥∥∥∥
L∞

| g = (g1, g2), gi ∈ L∞(Ω), v = div g

}
, (2.43)

which is defined for functions belonging to the space

G := {v | ∃g = (g1, g2), gi ∈ L∞(Ω) such that v = div g}. (2.44)

The first example is to use Rtexture(v) = ‖v‖G. For the second example, proposed
in [8, 9], we define

Gλ := {v ∈ G | ‖v‖G ≤ λ} (2.45)

for λ > 0 and set

Rtexture(v) =

{
0 if v ∈ Gλ,

+∞ else .
(2.46)

We refer to [10] for a detailed discussion on these and related decomposition models.
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Chapter 3

Variational Methods in Banach
Spaces

3.1 Notation

In the remainder of this thesis, Ω ⊂ Rd is considered to be a d-dimensional open,
bounded domain with Lipschitz boundary. In some sections we restrict ourself to
the special case d = 2, which is then explicitly stated.

Moreover, by X we denote a Banach space with norm ‖ · ‖X . Let X∗ denote the
space dual to X. In X, we consider a weaker form of convergence (in a weak topol-
ogy) and mathematical concepts based on this form of convergence, e.g. sequential
lower semi-continuity of functions and sequential pre-compactness (the detailed def-
inition will be given below). For the compactness of notation, when referring to such
concepts, we omit in the following the term ’sequential’.

In the following sections, we will consider functionals on X, which are allowed to
take extended real values. To this end, we define R := R∪{+∞} with the additional
conventions that +∞ ≤ +∞, +∞+∞ = +∞, t · (+∞) = +∞ for t > 0.

3.2 Overview

In this chapter we consider the following general minimization problem

min
u∈K
F(u), (3.1)

where F(u) : X → R and K ⊆ X is closed and convex. (The case K = X is
explicitly included.) On F we assume that it can be split into two summands S and
R:

F(u) = S(u) +R(u). (3.2)

Please note that by means of the indicator function ιK, defined as

ιK(u) :=

{
0 for u ∈ K,
+∞ otherwise

(3.3)
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we can reformulate (3.1) as
min
u∈X
S(u) + R̃(u) (3.4)

with R̃(u) = R(u) + ιK(u). Thus, in the following without loss of generality we
focus on the case (3.4).

An important property of F which eases theoretical treatment is convexity:

Definition 3.1. The functional F is convex, if

F(λu+ (1− λ)v)) ≤ λF(u) + (1− λ)F(v), ∀u, v ∈ X, λ ∈ (0, 1). (3.5)

The functional F is strictly convex, if (3.5) is strict for every pair u 6= v with
F(u),F(v) <∞.

Please note that ιK(u) is convex if and only if K is convex.
In the following sections, we recall basics on existence theory, convex optimization

and optimality conditions from the literature. These basics will be used in the
subsequent chapters.

3.3 Existence Theory

Definition 3.2.

• The domain of F is defined as the set

Dom(F) := {u ∈ X | F(u) 6= +∞}. (3.6)

• The functional F is called proper, if Dom(F) 6= ∅.

Definition 3.3 (Sublevel/superlevel sets). Let F(u) : X → R. We define the
sublevel set level≤t(F) of level t ∈ R by

level≤t(F) := {u ∈ X | F(u) ≤ t}. (3.7)

and the superlevel set level≥t(F) of level t ∈ R by

level≥t(F) := {u ∈ X | F(u) ≥ t}. (3.8)

In the following, we require that the function space X is equipped with a weak
topology, which guarantees that sublevel sets of F are pre-compact. For the space
W 1,2(Ω) this is the standard weak topology for BV (Ω) one has to choose the
weak ∗ topology, cf. Chapter 2.

Definition 3.4. [Coercivity] A functional F : X → R is called coercive, if every
sublevel set level≤t, t ∈ R, is pre-compact with respect to the considered topology.
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Definition 3.5. [Lower semi-continuity] A functional F is called weakly lower semi-
continuous, if for every u ∈ X and every sequence uk converging to u with respect
to the weak topology considered,

F(u) ≤ lim inf
uk⇀u

F(uk) (3.9)

holds.

Theorem 3.6 (Theorem 5.1 in [148]). Let F : X → R be proper, coercive and
lower semi-continuous with respect to the considered topology. Then, there exists a
minimizer of F(u).

Proof: see [148].

Remark 3.7. The major steps in proving existence are:

1. Choose a minimizing sequence. Without loss of generality the sequence lies in
a sublevel set of F(u).

2. Due to coercivity, we can select a subsequence (uk)k converging to some u ∈ X
with respect to the considered topology.

3. Lower semi-continuity guarantees that

F(u) ≤ lim sup
k→∞

F(uk). (3.10)

Thus, since (uk)k is a minimizing sequence, u is a minimizer of F(u).

In the subsequent chapters, we will refer to this framework, when we discuss the
required properties for individual functionals F .

Remark 3.8.

• In the case of constraint minimization problems, the lower semi-continuity of
ιK is required, which induces that K has to be closed with respect to the topology
considered.

• A sufficient condition for uniqueness of the minimizer is, that F(u) is strictly
convex (requiring that K is convex).
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3.4 Fenchel Duality, Sub-Differential and

Sub-Gradient

Please recall the definition for a proper function, see Definition 3.2.

Definition 3.9 (Fenchel dual/conjugate). The dual of a proper functional F : X →
R is defined as

F∗ : X∗ → R,

u∗ 7→ F∗(u∗) := sup
u∈X
〈u∗, u〉 − F(u), (3.11)

where 〈·, ·〉 denotes the dual pairing with respect to X and its dual space X∗.

Definition 3.10 (Sub-differential). Let F : X → R be convex. An element p ∈ X∗

is called sub-gradient of F at u, if

F(v)−F(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ X. (3.12)

We call the set ∂F(u) ⊆ X∗ of all sub-gradients of F the sub-differential of F at u.
Similarly, we call an element u ∈ X sub-gradient of F∗ at p, if

F∗(q)−F∗(p)− 〈u, q − p〉 ≥ 0 ∀q ∈ X∗, (3.13)

and call the set ∂F∗(u) ⊆ X of all sub-gradients of F∗ the sub-differential of F∗ at
p. If the sub-differential of a convex function is single-valued, we identify this set
with its single element.

Remark 3.11 (Optimality condition). The concept of sub-differentials enables us
to state an optimality condition for a minimizer of a convex function: an element
u∗ ∈ X is minimizer of a convex functional if and only if

0 ∈ ∂F(u∗), (3.14)

see e.g. [148][Lemma 10.15.].

Definition 3.12. Let
F(u) = S(u) +R(u), (3.15)

where S,R : X → R are convex. The Fenchel transform of F is defined as

F∗(p) := S∗(p) +R∗(−p). (3.16)

(Please not that the Fenchel transform depends strongly on the choice of the decom-
position of F .)
Definition 3.13 (Dual gap). Let S,R : X → R be convex, lower semi-continuous
and proper. Assume that

inf
u∈X

(S(u) +R(u)) < +∞, inf
p∈X∗

(S∗(p) +R∗(−p)) > −∞. (3.17)

Then, we define the dual gap of F as

Gap(F) := inf
u∈X

(S(u) +R(u)) + inf
p∈X∗

(S∗(p) +R∗(−p)). (3.18)
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The following theorem shows that the dual gap is zero under certain conditions.

Theorem 3.14. Let S,R : X → R be convex, lower semi-continuous and proper.
Assume that one of the functionals is continuous in one point and that there exist
v ∈ X such that S(v) +R(v) < +∞. Then,

inf
u∈X

(S(u) +R(u)) = − inf
p∈X∗

(S∗(p) +R∗(−p)). (3.19)

(cf. Theorem 10.22 in [148]).
If now u is a minimizer of F(u) = S(u) +R(u) and p is a minimizer the Fenchel

dual F∗, then it obviously follows that

S(u) +R(u) + S∗(p) +R∗(−p)) = 0. (3.20)

It can be shown that (3.20) is a sufficient condition for minimizers of F and F∗:

Theorem 3.15. Let S,R : X → R be convex, lower semi-continuous and proper.

(i) If
S(u) +R(u) + S∗(p) +R∗(−p) = 0 (3.21)

holds for some (u, p), then u is a minimizer of F(u) = S(u) + R(u), p is a
minimizer of F∗ and (3.17) holds.

(ii) The condition (3.21) is equivalent to either of the Kuhn-Tucker conditions

p ∈ ∂S(u) and − p ∈ ∂R(u) (3.22)

or
u ∈ ∂S∗(p) and u ∈ ∂R∗(−p). (3.23)

3.5 Constrained Convex Problems and Variational

Inequalities

Let us now consider the constrained quadratic problem

min
u∈K
S(u) (3.24)

where K ⊆ X is a non-empty closed convex set and S(u) : X → R is convex. The
non-emptiness of K asserts that infu∈ S(u) <∞.

In the following, we motivate a necessary and sufficient condition for u to be a
minimizer of S(u) in terms of a variational inequality. To this end, we reformulate
(3.24) using the indicator function ιK, see (3.3), and rewrite (3.24) as

min
u∈X
F(u), F(u) := S(u) + ιK(u). (3.25)
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Applying Theorem 3.15 (ii) we find the following necessary and sufficient conditions
for minimizers u and p of F(u) and F∗(p),

p ∈ ∂S(u) and − p ∈ ∂R(u). (3.26)

In case of R being the indicator function of a convex set, ∂R(u) can be characterized
as follows. By definition of the sub-differential, we see that q ∈ ∂R(u), u ∈ K is
equivalent to

R(v)−R(u)− 〈q, v − u〉 ≥ 0 ∀v ∈ X. (3.27)

Recall that R(v) = +∞ for v 6∈ K. Moreover for any v ∈ K we have R(v) = 0.
As a consequence, (3.27) is satisfied for any v 6∈ K. Therefore, inequality (3.27) is
equivalent to

〈q, v − u〉 ≤ 0 ∀v ∈ K. (3.28)

It follows that the sub-differential ∂R(u) consists of all q satisfying (3.28).
Now assume that X is a Hilbert space. We then can make use of the isometry

between X∗ and X, so that the dual pairing 〈·, ·〉 can be replaced by the scalar
product, also denoted by 〈·, ·〉. In this case

∂R(u) = {q ∈ X | 〈q, v − u〉 ≤ 0 ∀v ∈ K}, (3.29)

where the right hand side of (3.29) is the normal cone NK(u) of the set K at u
(cf. [13, Example 16.12] or [136, Theorem 8.15] for the finite case). We immediately
obtain the following optimality condition for the optimization problem (3.25): u is
a minimizer of (3.25) if and only if

0 ∈ ∂S(u) +NK(u). (3.30)

Thus, the above considerations provide an equivalent ansatz to the optimization
problem (3.24) via the variational inequality

Find u ∈ K and p ∈ ∂S(u) such that

〈p, v − u〉 ≥ 0 ∀v ∈ K, (3.31)

which is a necessary and under mild conditions sufficient condition on u to be a
minimizer of F(u) [44].

Example 3.16. As an example, we consider the projection of f ∈ L2(Ω) onto a
closed non-empty convex set K ⊆ L2(Ω). The corresponding optimization problem
is given as

min
u∈K

1

2
‖u− f‖2L2 . (3.32)

In Chapter 4 we will discuss theory, which provides that functional

F(u) := 1

2
‖u− f‖2L2 + ιK(u) (3.33)
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is proper, weakly lower semi-continuous with respect to the weak L2-convergence and
coercive with respect to the L2-norm. Under these conditions Theorem 3.6 guarantees
the existence of a minimizer u ∈ K of (3.33). From the strict convexity of S(u) on K,
uniqueness of u follows. For further theory on projections, we refer to [4, Chapter 2]
and [13, Chapter 4].

In this particular example, using the fact that

∂S(u) = {u− f}, (3.34)

the variational inequality (3.31) simplifies to

Find u ∈ K such that

〈u− f, v − u〉 ≥ 0 ∀v ∈ K. (3.35)

⋄

In Chapter 6 we will present a generalized approach, in which we consider quasi-
variational inequalities instead of variational inequalities, where the constraint set
K is allowed to depend on the unknown u, i.e. K in (3.31) is replaced by K(u).
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Chapter 4

Convex Adaptive TV
Regularization

4.1 Notation and Basic Defintions

4.1.1 Multi-Indices for Partial Derivatives

In the following we consider functions u : Ω → R which have partial derivatives
in the weak sense of Sobolev functions or the classical sense. In order to refer to
the partial derivatives of u in a compact way, we utilize multi-indices (cf.[148]) as
follows: a multi-index γ ∈ Nd

0 is a d-tuple of nonnegative integers γ1, . . . , γd. We
then set

∂γu :=
∂|γ|u

∂xγ1
1 · · · ∂xγd

d

. (4.1)

For multi-indices, the following additional definitions will be required in this
chapter: We define the length or order of γ as |γ| = ∑d

i=1 γi. Moreover, we define
the number of multi-indices of length equal to l as

M(l) := ♯{γ ∈ Nd
0 | |γ| = l} (4.2)

and the number of multi-indices with length smaller or equal to l as

N(l) := ♯{γ ∈ Nd
0 | |γ| ≤ l}. (4.3)

The set of multi-indices can be totally ordered as follows: For two multi-indices γ
and σ we consider γ < σ, if either |γ| < |σ| or if there exists a 1 ≤ k ≤ d such that
γl = σl for l < k and γk < σk.

4.1.2 Gradient and Divergence-Operator of Order l

We define the gradient of order l of u : Ω→ R as

∇lu := (∂γu)|γ|=l : Ω→ RM(l), (4.4)
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and the divergence of order l as

divl u(x) :=
∑

|γ|=l

∂γuγ(x). (4.5)

The gradient of order l consists of all partial derivatives of order l. As an alter-
native, we can consider all partial derivatives up to order l:

∇u := (∇1u,∇2u, · · · ,∇lu) : Ω→ RN(l) (4.6)

as well as the corresponding divergence operator

div u(x) :=
∑

|γ|≤l

∂γuγ(x). (4.7)

4.1.3 Higher Order Total Variation

For l ∈ N and u ∈ W l−1,1(Ω) we define the total variation of order l as

TVl(u) := sup

{∫

Ω

u divl ϕ dL | ϕ ∈ C∞
c (Ω,RN(l)), ‖ϕ(x)‖2 ≤ 1

}
. (4.8)

Moreover, let

TV
l

(u) :=
l∑

i=1

TVi(u) =

(
l∑

i=1

‖∇iu‖L1

)
+ TVl(u). (4.9)

We define the space of functions of bounded l-th order variation by

BV l(Ω) := {u ∈ W l−1,1(Ω) | TVl(u) <∞}. (4.10)

We equip BV l(Ω) with the norm ‖.‖BV l := ‖.‖+ TV
l

(u).

Definition 4.1 (Weak convergence). We say that (uk)k ∈ BV l(Ω) weakly ∗ converges
to some u ∈ BV l(Ω), if

‖uk − u‖W l−1,1 → 0 and sup
k→∞

TVl(uk) <∞, (4.11)

(cf.[148]).

Lemma 4.2. Let (uk)k ∈ BV l(Ω) with uk → u in L1(Ω). Then, due to the conver-
gence in L1(Ω), we have

TVl(u) ≤ lim inf
k→∞

TVl(uk). (4.12)

The proof is analogous to the proof for first-order TV, see e.g. [55, Sect. 5.2.1].
Since we require a generalization of this proof in the following sections, we provide
the full proof together with a remark on this generalization:
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Proof. Let ϕ ∈ C∞
c (Ω,RN(l)) with ‖ϕ(x)‖ ≤ 1 for every x ∈ Ω, Then,

∫

Ω

u divl ϕ dL = lim
k→∞

∫

Ω

uk divl ϕ dL := a. (4.13)

Since we have TVl(uk) ≥ 0, there exists b := lim infk→∞ TVl(uk). We consider a
subsequence of (uk)k, also denoted by (uk)k, such that b = limk→∞ TVl(uk). Now
let us assume that a > b. Since

∫
Ω
uk divl ϕ dL → a we can find a K such that for

every k > K ∫

Ω

uk divl ϕ dL > b. (4.14)

Then, we have for all k > K, that

TVl(uk) ≥
∫

Ω

uk divl ϕ dL > b, (4.15)

which is a contradiction. Thus, a ≤ b. Using the definitions of a and b and (4.13),
we find ∫

Ω

u divl ϕ dL = a ≤ b = lim inf
k→∞

TVl(uk). (4.16)

Taking in (4.16) the supremum over all ϕ ∈ C∞
c (Ω,RN(l)) with ‖ϕ(x)‖2 ≤ 1 gives

TVl(u) ≤ lim inf
k→∞

TVl(uk). (4.17)

In particular, this shows that TVl(u) is weakly ∗ lower semi-continuous.

Remark 4.3. Please note that the proof neither uses particular properties of divl

nor the form of the constraint ‖ϕ(x)‖2 ≤ 1. In the same way, we can proof

R(u) ≤ lim inf
k→∞

R(uk). (4.18)

for

R(u) := sup

{∫

Ω

uDϕ dL | ϕ ∈ C∞
c (Ω, Y ), ϕ(x) ∈ D

}
(4.19)

with arbitrary differential operator D acting on functions ϕ : Ω → Y and arbitrary
closed set D ⊂ Rd.

4.2 Motivation

In Chapter 2 we have considered standard TV regularization and variants of aniso-
tropic and second-order TV. These regularization terms have in common that they
are defined via a supremum over dual variables, which lie in convex subsets of spaces
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of smooth functions and for which local constraints are imposed. For the standard
TV, for example, these local constraints are given as ‖ϕ(x)‖2 ≤ 1.

For each example considered in Chapter 2, the regularization strength can be
incorporated into these local constraints. For the standard TV regularizer, this
means that we consider

R(u) = sup

{∫

Ω

u divϕ dL | ϕ ∈ C1
c (Ω,R

2), ‖ϕ(x)‖2 ≤ α

}
. (4.20)

We might also write these local constraints in terms of sets, e.g. for standard TV

ϕ(x) ∈ Dloc := Bα(0), (4.21)

i.e. Dloc are closed balls of radius α centered at 0, or for the anisotropic TV semi-
norm TVa (cf. (2.31))

ϕ(x) ∈ Dloc := {p ∈ R2 | ‖p‖∞ ≤ α}, (4.22)

where ‖p‖∞ = maxi∈Rn |pi|, i.e. Dloc are squares with side length α. We refer to the
sets Dloc as local constraint sets . Analogously to the examples above the second-
order TV approaches discussed in Chapter 2 can defined via suitable local constraint
sets.

We observe, that the local effect of the regularization, i.e. the regularization
strength and an orientation dependent penalization is determined by the size and
shape of the local constraint set. In turn, we can think of locally adapting the regu-
larization term to improve the quality of the reconstructed image u. This, however,
requires some additional information about expected structures in the unknown im-
age u. We consider the following example:

(a) noisy data (b) anisotropic TV, r orthog-
onal to structures

(c) anisotropic TV, r parallel
to structures

Figure 4.1: Illustration of applying anisotropic TV to data with oriented structures.
(a) Input data with oriented parallel structures and Gaussian noise. (b) Smoothing
orthogonal to image structures. (c) Smoothing parallel to image structures.

36



4.2. MOTIVATION

Example 4.4. We assume image data f with structures mainly in one direction
n ∈ S1 and with additional Gaussian noise, see e.g. Fig. 4.1. In order to denoise
these data, we can think of a TV variant which penalizes the total variation of the
signal mainly in the direction perpendicular to n. To this end, we define

R(u; r, α, β) := sup

{∫

Ω

u divϕ dL | ‖r⊤ϕ‖2 ≤ α, ‖(r⊥)⊤ϕ‖2 ≤ β

}
(4.23)

for some 0 < α ≪ β and arbitrary r ∈ S1. Thus, R(u; r, α, β) penalizes jumps in
direction of ±r with factor α and jumps in direction of ±r⊥ with factor β. Therefore,
R(u; r, α, β) is an anisotropic TV regularizer.

In order to denoise data with structures orientated in direction of n, one then
should consider

min
u∈BV (Ω)

1
2
‖u− f‖2L2 +R(u;n, α, β). (4.24)

Fig. 4.1 shows the results of using R(u;n⊤, α, β) (b) and R(u;n, α, β) (c) with
α = 0.001 and β = 0.5 for denoising the test data (a). Clearly, using r = n
produces preferable results. However, using this type of regularizer requires to know
the orientation of present structures in advance.

Finally, we remark that R(u; r, α, β) can be re-written as

R(u; r, α, β) := sup

{∫

Ω

u divϕ dL | ϕ(x) ∈ Dloc

}
, (4.25)

where

Dloc := Rect(r, α, β) :=
{
ϕ ∈ R2 | ‖r⊤ϕ‖2 ≤ α, ‖(r⊥)⊤ϕ‖2 ≤ β

}
(4.26)

is a rectangle centered at 0 with one side parallel to r with length 2α and the other
side perpendicular to r with length 2β.

The point symmetry of Dloc with respect to 0 asserts, that the gradient of u is
penalized independent of its sign. ⋄

In the case of higher order TV, constraint sets occur for the differential operators
of different order independently. In view of unifying the notation, we remark that
the differential operators and their respective constraint sets can be merged into one
joint differential operator and one constraint set. We illustrate this procedure by
means of the standard second-order TV model (2.36).

Example 4.5. We consider a regularization term combining the first- and second-
order TV semi-norms:

R(u) :=αTV(u) + β TV2(u)

= sup
{∫

Ω

u divϕ1 dL | ϕ1 ∈ C1
c (Ω;R

2), ‖ϕ1(x)‖2 ≤ α a.e.
}

+sup
{∫

Ω

u div2 ϕ2 dL | ϕ2 ∈ C2
c (Ω;R

4), ‖ϕ2(x)‖2 ≤ β a.e.
}
.

(4.27)
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Since C∞
c (Ω;Rn) is dense in Cq

c (Ω;R
n), q < ∞, we can restrict without loss of

generality the sets of functions ϕi, i = 1, 2 in (4.27) to C∞
c (Ω;R2) and C∞

c (Ω;R4).
Moreover, we can combine the dual functions ϕi to ϕ := (ϕ1, ϕ2) ∈ C∞

c (Ω;R6)
and the two differential operators div and div2 to Dϕ := (div, div2)⊤ϕ. With these
definitions, we obtain

R(u) = sup
{∫

Ω

uDϕ dL | ϕ ∈ C∞
c (Ω;R6), ‖ϕ1(x)‖2 ≤ α, ‖ϕ2(x)‖2 ≤ β a.e.

}
.

(4.28)
Finally, again by the denseness of C∞

c (Ω;R6) we can switch back to ϕ ∈ C2
c (Ω;R

6)
in (4.28). ⋄

In the next section, we will consider a general model, which includes arbitrary
differential operators D and general local constraint sets Dloc(x), which depend on
the image location x. The sets Dloc(x) will be assumed to be closed and convex,
but may have arbitrary shapes. Moreover, we will provide theory for existence and
uniqueness of minimizers.

As already mentioned, when considering adaptive TV regularization, additional
information about image structures is required. We discuss suitable approaches to
gain such information in Section 4.6.

4.3 General Framework

In the following, we present a general framework of TV-based regularization. Com-
pared to the previous section, we allow a wider class of data terms S(u) as well as
a wider class of TV-based regularization terms R(u).

Let us start with the data term S(u). In what follows, we assume that S(u) is
defined for functions u ∈ Lp(Ω) for p ∈ {1, 2}, since these p cover the common cases
used in most applications. The generalizations to larger p, however, is straightfor-
ward.

We assume that S(u) is convex, lower semi-continuous with respect to the weak
convergence in Lp(Ω) and, in view of coercivity, is bounded from above by a term
depending on ‖u‖Lp . The standard form we will use for our applications is

S(u) := 1

p
‖Au− f‖pLp(Ωf )

, (4.29)

where f ∈ Lp(Ωf ) are the data, p ∈ {1, 2} and A : Lp(Ω) → Lp(Ωf ) is a linear
operator mapping to functions defined on Ωf ⊆ Ω. Other forms could be the sum of
two or more terms like (4.29), or, if a strict problem with unique solution is required,
while A is not injective, to set

S(u) := 1

2
‖Au− f‖2Lp(Ωf )

+
δ

2
‖u− u0‖2L2(Ω) (4.30)

with a small δ > 0. We refer to Section 4.5 below for a discussion of data terms of
such forms. In this section we will also provide the proofs of their required properties.
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In addition to the general form of the data term, we allow certain convex con-
straints on the solution u of the considered minimization problem. To this end we de-
fine a weakly closed convex subset K ⊆ L2(Ω) (which includes the case K = L2(Ω)).
We incorporate this constraint in terms of the indicator function ιK(u) as defined
in (3.3).

Now, we turn to the regularization term. Our regularization framework on the
one hand includes the examples discussed in the previous section, on the other
hand provides a concept of adaptivity to locally steer the regularization. To this
end, we consider an arbitrary differential operator D together with arbitrary closed
convex and non-empty sets D, again defined via local constraint sets Dloc(x). As
a further generalization, we introduce a dependency of the local constraint sets
on some arbitrary data v, i.e. Dloc = Dloc(x; v). The general form we assume for
regularization term R is

R(u; v) := sup
{∫

Ω

uDϕ dL | ϕ ∈ C l
c(Ω;Y ), ϕ(x) ∈ Dloc(x; v)

}
, (4.31)

where differential operator D acts on functions ϕ : Ω→ Y (usually Y = Rm for some
m ∈ N). To assert well-posedness and convexity of R(u; v), we assume that every
Dloc(x; v) is closed, convex and non-empty. Throughout this chapter, we choose
v = f , i.e. D is depending on the data f . However, the theoretical results retrieved
below are valid for arbitrary v. In particular in Chapter 6, we will consider such
arbitrary functions v ∈ Lp(Ω) and re-use the theoretical results from this chapter.

Let us now fix an appropriate function space and an appropriate topology. To
have the data term well defined, we require u ∈ Lp(Ω), while for regularization we
assume u ∈ BV l(Ω) for some l > 0. Thus we set

X := Lp(Ω) ∩ BV l(Ω), (4.32)

which equipped with the norm

‖u‖X := ‖u‖Lp +
l∑

i=1

TVi(u) (4.33)

is a Banach space. We introduce the following weak form of convergence:

Definition 4.6. A sequence (uk)k ∈ X is said to weakly converge to u in X, denoted

by uk X
⇀ u, if

1. (uk)k converges weakly ∗ to u in BV l(Ω) (cf. Definition 4.1), and

2. (uk)k weakly converges to u in Lp(Ω)

(in the case p = 1 the second assumption is already covered by the first one).
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Remark 4.7 (Pre-compactness). Any bounded set in X is pre-compact with respect
to this weak convergence. This is due to the fact that we combine two types of
weak pre-compactness of bounded sets, the weak pre-compactness in L2(Ω) and the
weak ∗ pre-compactness in BV (Ω).

Remark 4.8 (Two-dimensional case). In the two-dimensional case Ω ⊂ R2 (recall
that Ω is open, bounded and with Lipschitz-boundary) we note that the embedding
from BV (Ω) to L2(Ω) is continuous [148, Thm 9.78]. Thus S(u), originally defined
on Lp(Ω), p = 1, 2, is well-defined on BV (Ω). We therefore can choose X = BV (Ω),
such that the considered weak convergence in X becomes the weak ∗ convergence in
BV (Ω).

With the generalizations mentioned above, our minimization problem becomes

min
u∈K
F(u), F(u) := S(u) +R(u; f). (4.34)

It can be easily verified that this general approach covers all examples mentioned
so far. We briefly list the corresponding settings for D and Dloc(x; v):

Example cf. Y D Dloc

TV(u) (2.7) R2 div Bα(0)
αTVa(u) (2.31) R2 div Rect((1, 0)⊤, α, α)
R(u; r, α, β) Ex. 4.4 R2 div Rect(r, α, β)

TV2(u) (2.36) R6 div 2 Bα(0)× Bβ(0) ⊂ R2 × R4

TGV(u) (2.37) Symk(Rd) d̃iv
k {p | ‖ divl p‖ ≤ αl}

IC(u) (2.39) R2 × R4 div, div2 Bα(0)× Bβ(0) ⊂ R2 × R4

Remark 4.9 (Non-local Total Variation). We remark that the above model of a reg-
ularization term can also be adapted to cover non-local TV approaches. For example,
let us consider the non-local TV regularization proposed by Gilboa and Osher [65],
which can be characterized as

R(u; v) := sup
{∫

Ω

∫

Ω

ϕ(x, y)(u(x)− u(y)) dy dx | ϕ(x, y) ∈ L2(Ω× Ω),
∫

Ω

1

w(x, y; v)
ϕ(x, y)2 dy ≤ 1 for a.e. x ∈ Ω

}
, (4.35)

where w : Ω × Ω → R+ is a weighting function depending on the function v. The
standard approach is to use v = f . A typical choice for a weighting function is

w(x, y; v) := exp

(
−
∫

Br(0)

1

σ2
|v(x+ s)− v(y + s))|2 ds

)
(4.36)
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(with suitable boundary conditions on f .) We can rewrite (4.35) as

R(u; v) := sup
{∫

Ω

∫

Ω

u(x)Dϕ(x, y) dy dx | ϕ(x, y) ∈ L2(Ω× Ω),
∫

Ω

1

w(x, y; v)
ϕ(x, y)2 dy ≤ 1 for a.e. x ∈ Ω

}
(4.37)

for (Dϕ)(x, y) := ϕ(x, y) − ϕ(y, x). The main difference to our general form for
regularizer R in (4.40) is, that the test functions ϕ have to be augmented by a second
argument. This is one reason why the theoretical approach to non-local TV differs
from the one presented above. An revision of theory of non-local TV, however, is
out of the cope of this thesis.

4.4 Theory

In the following, we focus on the case D = div l for l > 0 and prove existence and
uniqueness of a minimizer. For other differential operators, the theory is analogous,
see Remark 4.17 at the end of this section.

In order to show existence of a minimizer, we make the following assumption:

Assumption 4.10 (For Existence).

(i) K is non-empty, convex and closed with respect to the convergence from Defi-
nition 4.6.

(ii) S : Lp(Ω)→ R, p = 1, 2, is convex and weakly lower semi-continuous in L2(Ω).

(iii) There exists non-negative constants q, C1, C2, C3 such that for all u ∈ K

‖u‖Lp ≤ C1(S(u))q + C2 TV(u) + C3. (4.38)

(iv) Dloc(x; v) for each x ∈ Ω is closed, convex. Moreover, there exist constants
0 < Cmin ≤ 1 ≤ Cmax, such that for every x ∈ Ω and every v

BCmin
(0) ⊆ Dloc(x; v) ⊆ BCmax

(0). (4.39)

(Recall that Br(0) denotes the closed ball of radius r centered at 0.)

Theorem 4.11 (Existence). Let S(u), K, A and Dloc(x; v) satisfy Assumption 4.10.
Then, the functional in (4.34) with

R(u; v) := sup
{∫

Ω

u div lϕ | ϕ ∈ C l
c(Ω;R

m), ϕ(x) ∈ Dloc(x; v)
}
, (4.40)

has a minimizer in K.
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Remark 4.12.

1. We reformulate the constraint optimization (4.34) as

min
u∈X
F̃(u), F̃(u) := S(u) +R(u; f) + ιK(u), (4.41)

where ιK is the indicator function of K (cf. (3.3)).

2. Note that the statement of Theorem 4.11 is different than that of Proposi-
tion 3.67 in [148], where u : Rd → R is assumed to be constantly 0 outside Ω,
while here we consider functions u defined only on the open domain Ω.

For the proof of Theorem 4.11 we require some properties of S(u), ιK andR(u; v),
which are provided by the following lemma and proposition.

Lemma 4.13. Let K be convex and closed with respect to the weak convergence
introduced in Definition 4.6. The indicator function ιK is lower semi-continuous
with respect to this weak convergence.

Proof. Let (uk)Kk=1 ∈ X, uk X
⇀ u ∈ X. First, assume u 6∈ K. If there existed

a subsequence of uk in K, from the closedness of K it would follow that u ∈ K,
which is a contradiction. Therefore, any subsequence uk′ of uk up to a finite set
has to lie in X \ K. Consequently, limk′→∞ ιK(uk′) = ∞. Since also ιK(u) = ∞ we
have ιK(u) = limk′→∞ ιK(uk′) and thus ιK(u) = lim inf

uk X
⇀u

ιK(uk). Second, assume

u ∈ K. Then ιK(u) ≤ ιK(uk) for every k, thus ιK(u) ≤ lim inf
uk X

⇀u
ιK(uk).

Proposition 4.14. Let Assumption 4.10 (iv) be satisfied. Then, the functional
R(u; v) defined in (4.31) with D = div l, l > 0, and fixed v is convex, bounded from
below and lower semi-continuous with respect to the weak ∗ convergence in BV l(Ω).
Moreover,

Cmin√
l

TV
l

(u) ≤ R(u; v) ≤ Cmax TV
l

(u). (4.42)

Proof. In the following, we consider test functions from the set

D := {ϕ ∈ C l
c(Ω;R

N(l)) | ϕ(x) ∈ Dloc(x; v)} (4.43)

with v fixed and denote the components of any such ϕ ∈ D by ϕi : Ω → RM(i),
i = 1, . . . , l, i.e. ϕ = (ϕ1, . . . , ϕl). We introduce the notation D0 := C l

c(Ω;R
N(l)).

Convexity of R: For fixed ϕ the term
∫
Ω
u divi ϕi dx for every i = 1, . . . , l is linear

and thus convex. Since
∫
Ω
u div lϕ dx is the finite sum of terms

∫
Ω
u divi ϕi dx,

i = 1, . . . , l, it is also convex. By Lemma 10.5. in [148], the supremum over a family
of convex functions is again convex.

Lower bound for R: Due to Assumption 4.10 (iv) the constant function ϕ = 0
lies in D. With this particular ϕ, we find 0 =

∫
Ω
u div lϕ dx ≤ R(u; v).
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Weak∗ lower semi-continuity ofR: The proof of the weak∗ lower semi-continuity
is analogously to the proof of Lemma 4.2, see Remark 4.3.

Lower TVl-bound of R: To show the lower and upper TVl-bound of R we use
the following relations:

sup
x∈A

f(x) ≤ sup
x∈B

f(x) for A ⊆ B and arbitrary f, (4.44)

sup
x∈Br(0)

f(x) = r sup
x∈B1(0)

f(x) for r > 0 and arbitrary linear f. (4.45)

Let c := Cmin√
l
, where Cmin is the constant from Assumption 4.10 (iv). Then,

cTV
l

(u) = c (
l−1∑

k=1

|∇ku|+ TVl(u))

= c sup
ϕ∈D0, ϕk(x)∈B1(0),k=1,...,l

l∑

k=1

∫

Ω

u divk ϕk dx

= sup
ϕ∈D0, ϕk(x)∈Bc(0),k=1,...,l

∫

Ω

u div lϕ dx

= sup
ϕ∈D0, ϕ(x)∈BCmin

(0)

∫

Ω

u div lϕ dx

≤ sup
ϕ∈D0, ϕ(x)∈Dloc(x)

∫

Ω

u div lϕ dx = R(u; v),

(4.46)

where we used (4.45) and the fact that

Bc(0)× · · · ×Bc(0)︸ ︷︷ ︸
l times

⊆ BCmin
(0) ⊆ Dloc(x) ⊆ RN(l) (4.47)

together with (4.44).

Upper TVl-bound of R: Using again Assumption 4.10 (iv), we find

R(u; v) = sup
ϕ∈D0, ϕ(x)∈Dloc(x;v)

∫

Ω

u div lϕ dL

≤ sup
ϕ∈D0, ϕ(x)∈BCmax (0)

∫

Ω

u div lϕ dL

≤ sup
ϕ∈D0, ϕk(x)∈BCmax (0)

l∑

k=1

∫

Ω

u divk ϕk dx

= Cmax sup
ϕ∈D0, ϕk(x)∈B1(0)

l∑

k=1

∫

Ω

u divk ϕk dx

= Cmax(
l−1∑

k=1

|∇ku|+ TVl(u))

= Cmax TV
l

(u),

(4.48)
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where we used (4.44), (4.45) and that (v1, . . . , vl) ∈ Br(0) ⇒ vk ∈ Br(0), k =
1, . . . , l.

Corollary 4.15. The functional TV
l

(u) is convex and weakly ∗ lower semi-continu-
ous on BV l(Ω).

Proof. The corollary follows from Proposition 4.14 by using

Dloc(x) := B1(0)× · · · ×B1(0)︸ ︷︷ ︸
l times

. (4.49)

Proof of Theorem 4.11. We show that the assumptions of Theorem 3.6 are satisfied.

F(u) is proper: Since K is non-empty, there exists at least one u0 ∈ K. We have

S(u0) <∞ and ιK(u0) <∞ by definition and R(u0; f) ≤ CmaxTV
l
(u0) <∞, since

K ⊆ X. Thus, F(u0) <∞, i.e. F is proper.

F(u) is coercive: We show that for any t ∈ R the sublevel set level≤t(F) (cf.
Definition 3.3) is pre-compact with respect to the weak convergence in X. To this
end let u ∈ level≤t(F) for fixed t. Then, u ∈ K. Moreover, using Assumption

4.10(iii), Proposition 4.14, TV(u) ≤ TV
l

(u) we have

‖u‖X = ‖u‖Lp + TV
l
(u) ≤ C1S(u)q + (1 + C2)TV

l
(u) + C3

≤ C1S(u)q +
(1 + C2)

√
l

Cmin

Rv(u) + C3

≤ C1t
q +

(1 + C2)
√
lt

Cmin

+ C3 ≤ ∞.

(4.50)

Thus, every sublevel set is bounded in ‖ · ‖X and, by Remark 4.7, pre-compact with
respect to the weak convergence in X.

F(u) is weakly lower semi-continuous:
From Lemma 4.19(i) we have that S(u) is lower semi-continuous with respect to

the weak convergence in X. ι(u) and R(u; v) by Lemma 4.13 and Proposition 4.14
are also lower semi-continuous with respect to this convergence. Since F(u) is the
sum of S(u), ι(u) and R(u; v), their weak lower semi-continuity carries over to
F(u).

Theorem 4.16 (Uniqueness). Let Assumption 4.10 be satisfied. If S is strictly
convex, then functional (4.34) attains a unique minimizer.

Proof. Theorem 4.11 guarantees existence of a minimizer of (4.34). Assume that
there are two minimizers u1, u2 ∈ K, u1 6= u2, with F(ui) = infuF(u), i = 1, 2.
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Then for ũ := 1
2
(u1 + u2) we find that ũ ∈ K since K is convex and, since S(u) is

strictly convex and u→ R(u, v) is convex, that

S(ũ) < 1

2
S(u1) +

1

2
S(u2),

R(ũ, f) < 1

2
R(u1, f) +

1

2
R(u2, f).

(4.51)

Combining both inequalities gives

F(ũ) < 1

2
(F(u1) + F(u2)) = min

u∈C
F(u), (4.52)

which is a contradiction.

Remark 4.17. So far we have provided theory for the case D = div l. The same
theory holds in the arbitrary case, if we replace Assumption 4.10 (iv) by directly
assuming

Cmin√
l

TV
l

(u) ≤ R(u; v) ≤ Cmax TV
l

(u). (4.53)

(cf. Proposition 4.14).

4.5 Examples of Data Terms

In view of the three applications of image denoising, image deblurring and image
inpainting, we consider the following examples of linear operators.

For all examples we choose p = 2, thus X = L2(Ω) ∩BV (Ω) and

S(u) = 1

2
‖Au− f‖2L2(Ωf )

(4.54)

where A : L2(Ω) → L2(Ωf ) and Ωf ⊆ Ω. In order to apply Theorem 4.11, which
guarantees existence of a minimizer of F(u), we require S(u) to be convex, lower
semi-continuous with respect to the weak convergence in L2(Ω) and to fulfill As-
sumption 4.10 (iii) (providing coercivity of F). The convexity holds due to the
fact that operator A is linear and 1

2
‖ · −f‖2L2(Ωf )

is convex. In order to show that

S(u) is weakly lower semi-continuous and satisfies Assumption 4.10(iii), we need
the following Assumption on operator A. The subsequent lemma then provides
both properties.

Assumption 4.18 (Assumptions on A).

(i) There exists a constant Ca > 0 such that for every constant u ∈ K

‖u‖Lp(Ω) ≤ Ca‖Au‖Lp(Ωf ). (4.55)

45



CHAPTER 4. CONVEX ADAPTIVE TV REGULARIZATION

(ii) A is a bounded operator. There exists a constant Cb > 0 such that for every
u ∈ K

‖Au‖Lp(Ωf ) ≤ Cb‖u‖Lp(Ω). (4.56)

Lemma 4.19. Let operator A be linear and satisfy Assumption 4.18 (i) and (ii).
Then, the following holds:

(i) S(u) := 1
2
‖Au− f‖2Lp(Ωf )

is convex and lower semi-continuous with respect to
the convergence from Definition 4.6.

(ii) There exists a constant CA such that

‖u‖L2(Ω) ≤ CA(‖Au‖L2(Ωf ) + TV(u)); (4.57)

Moreover, Assumption 4.10 (iii) holds.

Proof. Claim (i): Obviously, S(u) is convex in u, since Au is linear and ‖·−f‖2L2(Ωf )

is convex. Next, we show that S is lower semi-continuous with respect to the con-

vergence from Definition 4.6. Let uk ∈ X such that uk X
⇀ u ∈ X. In the case p = 1

the weak convergence induces ‖uk − u‖L1(Ω) → 0. The inverse triangle equation
together with Assumption 4.18 (ii) gives

‖Au− f‖L1(Ωf )−‖Auk− f‖L1(Ωf ) ≤ ‖A(uk−u)‖L1(Ωf ) ≤ Cb‖uk−u‖L1(Ω). (4.58)

Since the right hand side tends to zero for k →∞, and since we can restrict (4.58)
to any subsequence for which ‖Auk − f‖L1(Ωf ) converges, we find

‖Au− f‖L1(Ωf ) ≤ lim inf
k→∞

‖Auk − f‖L1(Ωf ). (4.59)

In the case p = 2 the weak convergence in X induces a weak convergence in L2(Ω).
Using Lemma 10.6 in [148] it suffices to show the (strong) lower semi-continuity of
S(u) in L2(Ω) to obtain the weak continuity. To this end, let uk now converge to u
in L2(Ω). In particular ‖uk‖L2(Ω) has to be bounded. Then,

1

2
‖Au− f‖2L2(Ωf )

− 1

2
‖Auk − f‖2L2(Ωf )

=
1

2

∫

Ωf

(Au− f)2 − (Auk − f)2 dL

=
1

2

∫

Ωf

(Au+Auk − 2f)(A(u− uk)) dL

≤ 1

2
Cb(Cb(‖u‖L2(Ω) + ‖uk‖L2(Ω)) + 2‖f‖L2(Ω))‖u− uk‖L2(Ω).

(4.60)
Since (‖u‖L2(Ω)+ ‖uk‖L2(Ωf )+2‖f‖L2(Ωf ) is bounded and ‖u−uk‖L2(Ω) → 0, we find

1

2
‖Au− f‖2L2(Ωf )

≤ lim
k→∞

1

2
‖Auk − f‖2L2(Ωf )

= lim inf
k→∞

1

2
‖Auk − f‖2L2(Ωf )

. (4.61)

Thus, we have shown the strong lower semi-continuity of S(u) in L2(Ω).

46



4.5. EXAMPLES OF DATA TERMS

Claim (ii): Let c :=
∫
Ω
u dL and ũ := u − c. Then, using Assumption 4.18 (i)

and (ii),

‖u‖Lp(Ω) ≤ ‖ũ‖Lp(Ω) + ‖c‖Lp(Ω) ≤ ‖ũ‖Lp(Ω) + Ca‖A c‖Lp(Ω)

≤ ‖ũ‖Lp(Ω) + Ca‖Au‖Lp(Ωf ) + Ca‖A ũ‖Lp(Ωf )

≤ ‖ũ‖Lp(Ω) + Ca‖Au‖Lp(Ω) + CaCb‖ũ‖Lp(Ω)

= (1 + CaCb)‖ũ‖Lp(Ω) + Ca‖Au‖Lp(Ω).

(4.62)

We have from the Poincaré inequality [21] that there exists a constant CP > 0 such
that

‖ũ‖L2(Ω) ≤ CP TV(u). (4.63)

Thus, (4.57) follows with CA := max((1 + CaCb)CP , Ca). With this estimate, we
have

‖u‖L2(Ω) ≤ CA(‖Au‖L2(Ωf ) + TV(u))

≤ CA(‖Au‖Lp(Ωf ) + TV(u))

≤ CA(‖Au− f‖Lp(Ωf ) + TV(u) + ‖f‖Lp(Ωf ))

≤ CA(
√

2S(u) + TV(u)) + ‖f‖Lp(Ωf )).

(4.64)

Thus 4.10 (iii) follows with q = 1
2
, C1 = CA

√
2, C2 = CA and C3 = CA‖f‖Lp(Ωf ).

Example 4.20 (Denoising). We consider the model of additive Gaussian noise
introduced in Section 2.2. Let f ∈ L2(Ω) be the noisy data. To obtain the same
data term as in the ROF functional (2.9), we set Ωf = Ω and A = Id. Moreover,
we do not require additional constraints on u representing the noise-free image, thus
we set K = X. We check that Assumption 4.10 is satisfied. Firstly, we observe
that K by definition is non-empty, closed and convex. Secondly, the weakly lower
semi-continuity of norms (cf. [4]) carries over to squared norms. Finally, items (i)
and (ii) hold with Ca = Cb = 1. ⋄

Example 4.21 (Deblurring). Let Ωf ⊂ R2 be open, bounded and with Lipschitz
boundary. We consider an operator A given by the convolution with a kernel K(x) :
R2 → R, i.e.

(Au)(x) :=

∫

R2

u(y − x)K(x) dL, x ∈ Ωf , u ∈ L2(R2). (4.65)

On K(x) we make the following assumptions:

1. K(x) is point-symmetric in 0 for all x ∈ R2,

2. K(x) non-negative and bounded,

3. there exists r1 > 0 such that suppK(x) ⊆ B̊r1(0), and

4. there exists r2 > 0 and CK > 0 such that K(x) ≥ CK on Br2(0).
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Now let u ∈ L2(Ω) with

Ω := {x ∈ R2 | ∃y ∈ Ωf with |x− y| < r1}. (4.66)

Please note that Ωf ⊆ Ω and that Ω is large enough to guarantee that A in (4.65) is
well-defined. As a consequence of the above assumptions, we have K ∈ L2(R2) and,
due to the properties of convolutions (cf. [4]), A is a bounded linear operator from
L2(Ω) to L2(Ωf ). (In particular, 4.18 (ii) is fulfilled.) The motivation to distinguish
between domains Ω and Ωf is as follows. Let us assume that function u first is
only defined on Ωf , i.e. u ∈ L2(Ωf ). To still guarantee the well-posedness of A in
(4.65), we have to prescribe values of u in Ω\Ωf . One alternative would be to extend
any u ∈ BV (Ωf ) outside Ωf with zero value. However, from the point of view of
image processing, such an extension would lead to unnatural boundary effects. In
order to constantly extend a function u ∈ BV (Ωf ), we could make use of a trace
operator, see e.g. [55], to obtain values almost everywhere along the boundary ∂Ωf

of Ωf . Then, extending u at points x ∈ ∂Ωf constantly in normal direction to the
boundary does not fully define u on Ω (problems arise at points x ∈ ∂Ωf where the
boundary is curved or has corners). To conclude, extending u to the full domain Ω
is not straightforward and it is unclear how to assert u ∈ BV (Ω).

Here, we follow a different strategy by assuming that some data u0 ∈ L2(Ω) are
given. We set

f(x) := (Au0)(x) =

∫

Br1 (0)

u0(y − x)K(x) dL, x ∈ Ωf . (4.67)

(In addition, we might assume that f is distorted by additive Gaussian noise as
considered in Example 4.20.)

Moreover, we set

K := {u ∈ X | u(x) ≥ 0 a.e.}. (4.68)

Obviously, K is non-empty and convex. We show that K is closed with respect to
the weak convergence in X. To this end, let uk ∈ K weakly converge to some u ∈ X
in the sense of Definition 4.6, which induces that uk → u in L1(Ω). Lemma 1.22 in
[4] provides that for a subsequence, also denoted by (uk)k, u

k → u a.e. in Ω. Since
uk ≥ 0 a.e., it follows that u ≥ 0 a.e. and thus u ∈ K. This shows that K is closed
with respect to the weak convergence in X.

Let us check that operator A fulfills the Assumption 4.18 (i). From the assump-
tions on K we find for u ≡ c being constant and non-negative that

(Au)(x) =

∫

Br1 (0)

u(y − x)K(x) dL

≥
∫

Br2 (0)

u(y − x)K(x) dL

≥ CKcπr
2
2.

(4.69)
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Since ‖u‖2L2(Ω) = |Ω|c2, it follows from (4.69) that

∫

Ωf

|Au|2 dL ≥ |Ωf |CK
2π2r42c

2 ≥ |Ωf |CK
2π2r42

|Ω| ‖u‖2L2 . (4.70)

Taking the square root on both sides of (4.70) gives

‖Au‖L2(Ωf ) ≥
√
|Ωf |CKπr

2
2√

|Ω|
‖u‖L2(Ω). (4.71)

Thus, Assumption 4.18 (i) is fulfilled with Ca :=

√
|Ω|√

|Ωf |CKπr22
. ⋄

Example 4.22 (Inpainting). In this example, we consider the reconstruction of
some data u0, when only a part of these data is known. To this end, let Ωf ⊆ Ω be
open. For arbitrary u ∈ L2(Ω) we define

A : L2(Ω)→ L2(Ωf ), (Au)(x) := u(x), ∀x ∈ Ωf . (4.72)

With this definition, let f := Au0. Then, the task of inpainting is to reconstruct the
function u0 ∈ L2(Ω) from data f ∈ L2(Ωf ) given only on Ωf .

To apply our approach, we set

K := {u ∈ L2(Ω) | u = f a.e. on Ωf}. (4.73)

The set K is non-empty, convex and, by an argumentation analogously to Example
4.21, closed with respect to the weak convergence in X.

We observe that with definitions (4.72) and (4.73) S(u) = 1
2
‖Au − f‖2L2(Ωf )

becomes zero on K. Thus we might alternatively set S(u) ≡ 0. However, for the
sake of a unified notation, we keep form (4.54) for S.

We check that operator A fulfills the Assumption 4.18, (i) and (ii). Firstly, to
show Assumption 4.18 (i), let u ≡ c be constant. We find

∫

Ωf

u2 dL = |Ωf ||c|2 =
|Ωf |
|Ω|

∫

Ω

u2 dL (4.74)

and thus

‖Au‖L2(Ωf ) ≥
√
|Ωf |√
|Ω|
‖u‖L2(Ω). (4.75)

Secondly, for arbitrary u ∈ L2(Ω), we have

‖Au‖2L2(Ωf )
=

∫

Ωf

|u|2 dL ≤
∫

Ω

|u|2 dL = ‖u‖2L2(Ω), (4.76)

thus 4.18 (ii) holds with Cb = 1. ⋄
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Remark 4.23. Please note that for the examples of deblurring and inpainting with
the respective setting of operator A, the data term S(u) is not strictly convex, so that
uniqueness of a minimizer if F(u) can not be guaranteed. If one requires unique-
ness of a minimizer, the data term has to be slightly modified by adding a strictly
convex term, for example ε‖u‖2L2. In the case of inpainting, another alternative is
to prescribe some value outside Ωf , e.g.

S(u) :=
∫

Ω

w(u− f̃)2 dL (4.77)

with

w(x) =

{
1 on Ωf ,

ε on Ω \ Ωf ,
f̃(x) =

{
f(x) on Ωf ,

0 on Ω \ Ωf .
(4.78)

for some small ε > 0, which is slightly different to using ε‖u‖2L2(Ω).

4.6 Detecting Image Structures for Adaptivity

In order to set up an adaptive TV regularizer, some additional information is re-
quired to steer the adaptivity. For approaches in image processing and computer
vision, typically information about image structures such as edges, corners and ridges
can be used. Throughout this section, we revisit corresponding approaches from the
literature [1, 22, 68, 154] to detect such structures.

In the following, we consider some grayscale image represented by a function
u : Ω ⊂ R2 → R, from which structural information is to be extracted. This
information will be encoded by scalar or vector-valued functions defined on Ω.

4.6.1 Edge Detection

The aim of this section is to derive information about edge location and edge ori-
entation. This information will be encoded in terms of an edge indicator function
χe : Ω → [0, 1], where values around 1 indicate the presence and values around 0
indicate the absence of an edge, and a vector field ve : Ω→ S1. We remark that the
information in ve is assumed to be meaningful only in regions where χe ≈ 1.

We will use both χe and ve in Section 4.7 to define adaptive TV regularization
approaches.

In order to detect edges, we utilize the structure tensor J(x, u) (cf. [57]), and its
eigenvectors vi(x, u), i = 1, 2 and eigenvalues λi(x, u), i = 1, 2. We recall the basic
definitions. Let

J0(x; u) := ∇uσ(x)∇u⊤
σ (x), (4.79)

where uσ := u ∗ Kσ is a smoothed version of u, obtained by convolution with a
Gaussian kernel Kσ with standard deviation σ. The structure tensor J(x; u) is
given as

J(x; u) = Jρ(x; u) := (J0(·; u) ∗Kρ)(x), (4.80)
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with ρ > 0. For the simplicity of notation, we will leave out the subscript of Jρ if
it is clear from the context. Please note that in (4.80) the convolution is applied
component-wise.

We assume without loss of generality that the eigenvalues of J(x; u) are ordered,
i.e. λ1(x; u) ≥ λ2(x; u) ≥ 0 , with the corresponding eigenvectors denoted by v1(x; u)
and v2(x; u).

The eigenvalues of the structure tensor possess the property, that in homogeneous
regions λ1 ≈ λ2 ≈ 0, at edges λ1 ≫ λ2 ≈ 0 and at corners λ1 ≈ λ2 ≫ 0. We therefore
can use the difference of the eigenvalue to detect edges. To this end, we define

coh(x; u) := λ1(x; u)− λ2(x; u). (4.81)

The notation refers to the term coherence used in the concept of anisotropic diffusion
[175].

We set up a corresponding edge indicator function χe(x; u) : Ω → [0, 1] by
defining

χe(x; u) :=

{
coh(x)
λ1(x;u)

if λ1(x; u) > 0,

0 if λ1(x; u) = 0,
(4.82)

or
χe(x; u) := min{s coh(x; u), 1}, (4.83)

While the first definition has the property of naturally normalizing the difference
λ1 − λ2 (recall that λ1 ≥ λ2 ≥ 0), the second definition has the advantage of being
Lipschitz-continuous with respect to λi, i = 1, 2, a property which will be required
for our regularization model in Chapter 6.

In order to retrieve the orientation of edges, we can make use of the eigenvalue
v1 approximating the edge normals (at positions where λ1−λ2 is sufficiently large).
Thus, we choose the vector field ve to be

ve(x; u) : Ω→ S1, x 7→ ve(x; u) = v1(x; u). (4.84)

4.6.2 Corner Detection

The standard structure tensor J(x, u) can be used to detect the location of edge
corners. However, it cannot detect the directions of the adjacent edges if they are
not orthogonal to each other. This is due to the fact that the the eigenvectors of
the structure tensor have to be orthogonal.

To resolve this problem, Mühlich and Aach [1, 117] have proposed elaborated
structure tensors to detect double orientations. They consider two models, a trans-
parent and an occlusion model, which we briefly recall below.

Occlusion Model

Assume that u(x) can be locally decomposed into two functions ui, i = 1, 2 as
follows. There exists a surrounding U of x0 ∈ Ω, which can be split into two open
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connected regions Ui with U1 ∩ U2 = ∅ and U = U1 ∪ U1, such that

u(x) =

{
u1(x) if x ∈ U1

u2(x) if x ∈ U2.
(4.85)

Moreover, we assume that each ui can be described by ui(x) = φi(〈si, x〉) with
functions φi : R → R and two orientations s1 ∦ s2, ‖si‖2 = 1; for i = 1, 2, i.e. ui is
constant in direction of si. We consider the task of estimating ri := s⊤i from u. We
denote the entries of ri by ri1 and ri2. Now let

ν(u) :=
(
(∂x1uσ)

2, ∂x1uσ∂x2uσ, (∂x2uσ)
2
)⊤

, (4.86)

where we applied the partial derivatives with respect to the two-dimensional coor-
dinates x = (X1, X2) and where uσ is obtained by convolution of u with a Gaussian
kernel Kσ, σ > 0 as in the previous section. We then consider structure tensor

J0(x; u) := ν(x; u)ν⊤(x; u), J(x; u) := (J0(·; u) ∗Kρ)(x), (4.87)

where the convolution with kernel Kρ is applied component-wise. It can be shown
that under the above assumption on u the rank of J(x; u) is at most 2. The rank
can be identified with the three cases of a homogeneous region (rank = 0, both φi

constant), an edge region (rank = 1, one φi constant) and a corner region (rank = 2,
both φi non-constant). For each region, we have to determine the directions ri
in a different manner. If rank = 2, we even have to distinguish further between
two special cases. In order to refer to different cases separately, we introduce a
superscript r(j), j = 1, . . . , 4.

Before we discuss the different kinds of regions, we introduce some necessary
notations. For the sake of simplicity, we omit in the following the parameter x of
all functions. We denote by λ1(u) ≥ λ2(u) ≥ λ3(u) ≥ 0 the eigenvalues of J(u)
and v1(u), v2(u) and v3(u) the corresponding eigenvectors. Moreover, we require
the following two values (the differences between the ordered eigenvalues):

coh1(u) := λ1(u)− λ2(u), coh2(u) := λ2(u)− λ3(u). (4.88)

The estimation of r
(j)
i then is as follows:

1. Corners (coh2(u) > 0): The rank of J(u) is 2. It can be shown that this is
equivalent to the case that both φi are non-constant, i.e. that the two φi form
a corner. Moreover, the vector

r = r1 ⊛ r2 := (r11r21, r11r22 + r12r21, r12r22)
⊤. (4.89)

is element of the null space N (J(x, u)) of J . We can retrieve the pair (r1, r2)
from the third eigenvector v3 = (v3,1, v3,2, v3,3)

⊤ ∈ N (J(x, u)) as follows: One
has to distinguish between the cases v3,1 6= 0 and v3,1 = 0. In the case v3,1 6= 0
we set

r
(1)
1 (u) ‖ (v3,1(u), y1(u))⊤, r

(1)
2 (u) ‖ (v3,1(u), y2(u))⊤, (4.90)
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where y1(u), y2(u) are the solutions of the quadratic equation

y2 + v3,2(u) y + v3,1(u) v3,3(u) = 0. (4.91)

In the case v3,1 = 0, the unit vectors

r
(2)
1 (u) ‖ (v3,2(u), v3,3(u))⊤, r

(2)
2 (u) ‖ (−v3,3(u), v3,2(u))⊤ (4.92)

can be used.

2. Edges (coh2(u) = 0, coh1(u) > 0): We determine r1, r2 depending on
the eigenvector v1(u). Along straight edges, the eigenvector v1 is parallel
to (s21, s1s2, s

2
2) (cf. [154]). We can retrieve s1 = r⊤1 up to its sign as s1 =

sgn(v1,2)
√
v1,1,
√
v1,3)

⊤ if v1,1 > 0 and s1 =
√
v1,1, sgn(v1,2)

√
v1,3)

⊤ otherwise.
We then set

r
(3)
1 := s⊤1 , r

(3)
2 := s1. (4.93)

3. Homogeneous regions (coh1(u) = coh2(u) = 0): Since no detectable struc-
tures are present, the definition of ri is ambiguous. We fall back to a default
setting

r
(4)
1 (u) := (1, 0)⊤, r

(4)
2 (u) := (0, 1)⊤. (4.94)

Please note that superscripts (1) to (4) are used to distinguish between the different
cases. In particular this becomes important, when the different vectors have to be
interpolated between two distinct regions, as it will be required in Chapter 6.

Transparent Model

Assume that u(x) can be locally decomposed into two functions ui, i = 1, 2 by

u(x) = u1(x) + u2(x), (4.95)

where each ui can be locally described by ui(x) = φi(〈ri, x〉) with functions φi : R→
R and two orientations r1 ∦ r2, ‖ri‖ = 1; for i = 1, 2. We denote the entries of ri by
ri1 and ri2. The task is to estimate ri from u.

We consider the structure tensor

J0(x; u) := ν(x; u)ν⊤(x; u), J(x; u) := (J0(·; u) ∗Kρ)(x), (4.96)

where ν(x; u) ∈ R3 is given as

ν := (∂x1x1uσ, ∂x1x2uσ, ∂x2x2uσ)
⊤, (4.97)

i.e. different to the occlusion model with products of first-order derivatives, we now
use second-order derivatives. It can be shown that the structure tensor has a rank
of at most 2. As for the occlusion model, we again have to distinguish between the
cases of a homogeneous region (rank = 0, two constant φi), an edge region (rank = 1,

one φi constant) or a vertex (rank = 2, two non-constant φi). The r
(j)
i then can be

determined in the same way as in occlusion model.
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4.6.3 Detection of Slope Discontinuities

r✶

r✷

✡✶

✡✶
�❋ ❂
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☎✶
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Figure 4.2: Graph Γ = (x, y, u(x, y))⊤ (yellow) of a continuous and piecewise
affine function u with a discontinuity in the gradient (interface between Ω1 and
Ω2). The epigraph of u is the volume above Γ, represented as the superlevel set of
F (x, y, z) = u(x, y) − z. On the graph the gradient ∇F of F coincides with the
surface normal of Γ.

The structure tensors considered in Sections 4.6.1 and 4.6.2 are sufficient to
identify discontinuities in u (edges and corners). We now focus on regions where u
is continuous but has discontinuities in its first derivatives. In addition, we assume
that u is piecewise affine. This assumption is in view of a first- and second-order TV
regularization favoring such piecewise affine solutions. For the sake of simplicity, let
us consider a prototypical function model with only one discontinuity, which locally
on some U ⊆ Ω represents a part of a larger image: we assume that U can be divided
into two segments Ui, i = 1, 2 such that u is affine in each segment, i.e. u can be
represented as

u(x, y) =

{
r⊤1 ( x

y ) + b1 if (x, y) ∈ U1,

r⊤2 ( x
y ) + b2 if (x, y) ∈ U2,

(4.98)

for Ui open, such that U1∩U2 = ∅ and U1 ∪ U2 = Ω, and ri ∈ R2, bi ∈ R for i = 1, 2.
Please note that different from the previous sections, we represent two-dimensional
coordinates in Ω by (x, y) instead of x in the following. Fig. 4.2 illustrates a proto-
typical function u as considered in (4.98).

We now discuss a method to detect the case where r1 6= r2. To this end, we
consider the epigraph of u defined as the superlevel set

level≥0(F ) := {(x, y, z) | F (x, y, z) ≥ 0} (4.99)

of F (x, y, z) := u(x, y) − z. In order to detect (surface) edges of the graph (i.e.,
locations, where the slope changes), we now apply the three-dimensional structure
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Figure 4.3: Test images roof and cone hat for detecting slope discontinuities

tensor to F , i.e. J =
(
(∇F )(∇F )⊤

)
ρ
, where

∇F (x, y, z) =
1√

(∂xu)2 + (∂yu)2 + 1)
(∂xu, ∂yu,−1)⊤. (4.100)

Note that ∇F is constant in z. Since we are only interested in edges of the graph
Γ = {(x, y, z) | F (x, y, z) = 0} (i.e., slope discontinuities), we define ∇F̃u(x, y) :=
∇F (x, y, u(x, y))) and restrict structure tensor J to Γ:

J(x, y; u) :=
(
(∇F̃ (x, y))(∇F̃ (x, y))⊤

)
ρ
. (4.101)

We observe that ∇F̃u(x, y) is the normal to the graph Γ at (x, y, u(x, y)).

Remark 4.24. The following two scenarios are of particular interest:

a) Within an affine region: For an affine function u, J(x, y; u) has exactly one
non-zero eigenvalue. This is due to the fact that in this case ∇F̃u(x, y) is constant
and the convolution of ∇F̃u∇F̃⊤

u does not change the rank.

b) Interface between two affine regions of different slope: For such u,
J(x, y; u) sums up two different directions (r1,1, r1,2,−1) and (r2,1, r2,2,−1): Re-
writing the convolution of the matrix entries as a weighted integral, we have

J(x, y; u) = (∇F̃u∇F̃⊤
u )ρ =

∫

Ω

w(x)∇F̃u∇F̃⊤
u dx

= w1

( r1,1
r1,2
−1

)
(r1,1, r1,2,−1) + w2

( r2,1
r2,2
−1

)
(r2,1, r2,2,−1)

(4.102)

with wi :=
∫
Ui
w(x) dx. We observe that in (4.102) two rank-1 matrices are added

up. Each matrix has one non-zero eigenvalue wi ·‖(ri,1, ri,2,−1)‖22 with corresponding
eigenvector vi = (ri,1, ri,2,−1). Since the eigenvectors are linear dependent only if
r1 = r2, J(x, y; u) has rank 2 near the discontinuity, where r1 6= r2.

In the following we denote by λi(x, y), i = 1, 2, 3 the eigenvalues of J(x, y; u)
in decreasing order. As an indicator for the existence of slope discontinuities we
propose to use λ2(x). This is motivated by the fact that, similarly to the standard
structure tensor in 2D, J(x, y; u) reveals two eigenvalues significantly larger than 0 at
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(a) (b) (c) (d)

Figure 4.4: Detecting slope discontinuities using the standard structure tensor (b),
a curvature based approach (c), and the proposed method (d) in the test images
depicted in Fig. 4.3 (black=0, white=1). In both cases the standard structure tensor
fails to detect the slope discontinuities as shown in the ideal result (a) (middle line
in the first image, ring and center point in the second image). Only the proposed
approach is able to detect the slope discontinuity in the first test image (top row).
On the second test image (bottom row), the proposed approach provides a less noisy
and more precise result than the curvature based approach.

edges of the graph, while in regions of constant slope the second eigenvalue becomes
0. Therefore the magnitude of the second eigenvalue can be used to distinguish
between both cases. We propose

χsd : Ω→ [0, 1],

χsd(x) := min(cλ2(x), 1),
(4.103)

with some constant c > 0 as an indicator for regions of slope discontinuities. In order
to be less sensitive to edges, which are already covered by the standard structure
tensor, we use an upwind scheme to compute the gradient in (4.101). In practice, it
is advisable to use the pre-smoothed uσ (cf. Section 4.6.1) instead of u to be robust
against noise.

To demonstrate the benefits of using χsd to detect slope discontinuities, we com-
pare our approach to one approach based on the standard structure tensor and
one based on curvature, see Fig. 4.4. We observe that our approach detects slope
discontinuities more reliably than the competitive methods.
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4.7 Examples of Adaptive Regularization

4.7.1 First-Order TV Regularization

Let f ∈ L∞(Ωf ) denote the input data. Throughout this section, we consider the
differential operator in (4.31) to be D := div. The regularizer then takes the form

R(u; f) := sup
{∫

Ω

u divϕ dL | ϕ ∈ C1
c (Ω;R

2), ϕ(x) ∈ Dloc(x; f)
}

(4.104)

with local constraint sets Dloc(x; f) ⊂ R2.

Example 4.25 (Adaptive regularization strength / weighted TV). This TV regu-
larization approach aims at reducing the regularization parameter at locations where
edges are supposed to be present. Let αmax > 0 be the regularization strength to be
applied in homogeneous regions. We reduce this value at location where we expect
edges to be. In order to identify such locations, we make use of the gradient of the
input image. To this end we apply a pre-smoothing by convolving f with a Gaus-
sian kernel Kσ with standard deviation σ > 0. We denote the result by fσ. The
pre-smoothing on the one hand guarantees that we can evaluate the gradient of f at
every location x and, on the other hand, that our approach is robust against noise
in the input data. Then, we set

α(x; f) = max(αmax(1− κ‖∇fσ(x)‖2), ε), (4.105)

where κ > 0 is a parameter for the edge sensitivity and max(·, ε) with a small ε > 0
asserts the positive boundedness α from below.

An alternative to (4.105), which originally was introduced for diffusion processes
utilized for smoothing image data [132], is

α(x; f) := α0
1

1 + κ‖∇fσ(x)‖22
. (4.106)

Such an adaptive regularization strength is e.g. used in [43, 80, 109, 170].

To define a isotropic TV regularization with regularization strength α(x; f), we
choose Dloc(x; f) in (4.104) as

Dloc(x; f) = Bα(x;f)(0), (4.107)

i.e. we choose balls with varying radius α(x; f) as local constraint sets.

For alternative approaches of spatially adaptive TV regularization proposed in
the literature we refer to [100, 157, 158]. In the following, for the shortness of
presentation, we refer to TV approaches with adaptive regularization strength as
weighted TV. ⋄
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assert robustness to present noise. Based on the eigenvalues and eigenvectors of the
structure tensor J(x; fσ) in (4.80), we choose χe(x; f) to be one of the two alterna-
tives (4.82) or (4.83) and ve(x; f) as defined in (4.84). As in the example before the
extra argument f of χe and ve emphasizes that these values are obtained from the
noisy data f and thus that this approach implements a data-driven adaptivity.

For first-order TV, we use an anisotropic approach as in Example 4.26. For the
second-order TV regularization, we use an adaptive regularization strength, which is
decreased at edges to avoid smoothing across the edges. To this end, let 0 < αmin ≤
αmax and 0 < γmin ≤ γmax be fixed. We set

α(x; f) = αmax − χe(x; f)(αmax − αmin),

β(x; f) = αmax,

γ(x; f) = γmax − χe(x; f)(γmax − γmin).

(4.113)

For the sets Dloc
1 (x; f) (cf. (4.112)), which defines adaptivity for the first-order TV

regularization, we choose a two-dimensional ellipse with one half axis of length
α(x; f) parallel to ve(x; f) and the other half axis of length β(x; f) (cf. Exam-
ple 4.26). The sets Dloc

2 (x; f) for the second-order TV regularization is set to be a
four-dimensional ball of radius γ(x; f). Combining the constraint sets, we have

Dloc(x; f) := Ell(ve(x; f), α(x; f), β(x; f))× Bγ(x;f)(0). (4.114)

Note that the above approach has the properties of

• a weak (αmin) first-order regularization in normal direction at edges,

• a strong (αmax) first-order regularization in tangential direction at edges,

• a weak (γmin) second-order regularization at edges,

• a strong (γmax) second-order regularization in planar regions, and

• a strong regularization (αmax, γmax) in homogeneous (constant) regions.

⋄

Example 4.29 (Anisotropic first-order TV plus weighted second-order TV for pre-
serving edges and slope discontinuities). For this adaptive regularization of first-
and second-order TV, we require information about the location of edges and their
orientation as well as the location of slope discontinuities. The edge information
is assumed to be given by an edge indicator function χe together with a normal
vector field ve. To obtain this information, e.g. the standard structure tensor (cf.
Section 4.6) can be utilized. We assume the location of slope discontinuities to be
indicated by a function χsd(x; f) : Ω→ [0, 1], e.g. the indicator function proposed in
Section 4.6.3.

For first-order TV, we use an anisotropic approach as in Example 4.26. For the
second-order TV regularization, we use an adaptive regularization strength, which is
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decreased at edges and slope discontinuities to avoid smoothing across these struc-
tures. To this end, let 0 < αmin ≤ αmax and 0 < γmin ≤ γmax be fixed. We set

α(x; f) = αmax − χe(x; f)(αmax − αmin),

β(x; f) = αmax,

γ(x; f) = γmax −min(χe(x; f), χsd(x; f))(γmax − γmin),

(4.115)

and Dloc as in the previous example as

Dloc(x; f) := Ell(ve(x; f), α(x; f), β(x; f))× Bγ(x;f)(0). (4.116)

Note that this approach shares the properties of the approach from Example 4.28, and
in addition a weak (γmin) second-order TV regularization at slope discontinuities. ⋄

Example 4.30 (Anisotropic first- and second-order TV). We recall the model we
proposed in [98]. This adaptive regularization model, as the one before, takes into
account edge information as well as information about the location of slope dis-
continuities. Different to Example 4.29, it is also anisotropic in the second-order
regularization.

To motivate the approach, let us first consider the regularization of first- and
second-order separately, i.e. R(u; f) is split into

R(u; f) = R1(u; f) +R2(u; f), (4.117)

where

Ri(u; f) := sup
{∫

Ω

u divi ϕ dL | ϕ ∈ C i
c(Ω;R

m), ϕ(x) ∈ Dloc
i (x; f)

}
(4.118)

with m = 2 for i = 1 and m = 4 for i = 2. In particular, R1(u; f) penalizes
derivatives of u of first- and R2(u; f) derivatives of second-order.

For Dloc
1 (x; f) we choose the constraint sets from Example 4.26. The choice for

the Dloc
2 (x; f) is motivated as follows. We first assume the smooth case u ∈ C2(Ω).

We are aiming at penalizing the second-order derivatives of u as γ1‖(Hu)ξ(f)‖2 +
γ2‖(Hu)ξ(f)⊥‖2, where ξ(f) = ξ(x; f) is some predefined vector field depending on
f and

Hu(x) :=
(

∂xxu(x) ∂xyu(x)
∂yxu(x) ∂yyu(x)

)
(4.119)

is the Hessian of u. Thus, we penalize the absolute values of the second-order deriva-
tive of u in direction of ξ(f) weighted by factor γ1 and in perpendicular direction
weighted by γ2.

Now, for arbitrary ϕ ∈ C∞
c (Ω,R4), let us consider

∫

Ω

(div2 ϕ)u dL =

∫

Ω

〈ϕ,∇2u〉 dL. (4.120)
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Please recall from (4.4) that ∇2u := (∂x1x1u, ∂x1x2u, ∂x2x1u, ∂x2x2u)
⊤. For a given

normalized vector field ξ(x; f) = (ξ1(x; f), ξ2(x; f))
⊤ ∈ R2, ‖ξ(x; f)‖2 = 1, we rep-

resent ϕ(f) as

ϕ(x) = t1(x)w1(x; f) + t2(x)w2(x; f) + s1(x)w3(x; f) + s2(x)w4(x; f), (4.121)

where t, s ∈ R2 and

w1(x; f) := (ξ1(x; f), ξ2(x; f), 0, 0)
⊤,

w2(x; f) := (0, 0, ξ1(x; f), ξ2(x; f))
⊤,

w3(x; f) := (ξ⊥1 (x; f), ξ
⊥
2 (x; f), 0, 0)

⊤,

w4(x; f) := (0, 0, ξ⊥1 (x; f), ξ
⊥
2 (x; f))

⊤.

(4.122)

Note that {wi(x; f)}i form an orthonormal basis of R4. Then, standard calculus
shows

〈ϕ(x),∇2u(x)〉 = 〈t(x), Hu(x)ξ(x; f)〉+ 〈s(x), Hu(x)ξ⊥(x; f)〉. (4.123)

Now we calculate γ1(x)‖(Hu(x))ξ(x; f)‖2 and γ2(x)‖(Hu(x))ξ⊥(x; f)‖2 for some
weighting constants γ1(x), γ2(x) > 0. To this end, we take in (4.123) the point-
wise supremum over all t(x) ∈ Bγ1(0) and s(x) ∈ Bγ2(0) and derive

sup
t(x)∈Bγ1(x;f)

(0),

s(x)∈Bγ2(x;f)
(0)

〈ϕ(x),∇2u(x)〉 = γ1(x; f)‖(Hu(x))ξ(x; f)‖2+γ2(x; f)‖(Hu(x))ξ(x; f)⊥‖2.

(4.124)
The above considerations motivate the following definition for arbitrary u ∈ L1(Ω):

R2(u; f) := sup
{∫

Ω

(div2 ϕ)u dL | ϕ ∈ C∞
C (Ω;R4), ϕ(x) ∈ Dloc(x; f)

}
(4.125)

with

Dloc
2 (x; f) := {q ∈ R4 : 〈q, w1(x; f)〉2 + 〈q, w2(x; f)〉2 ≤ (γ1(x; f))

2,

〈q, w3(x; f)〉2 + 〈q, w4(x; f)〉2 ≤ (γ2(x; f))
2}. (4.126)

Both constraint sets Dloc
1 (x; f) = Ell(ξ(x; f), α(x; f), β(x; f)) and Dloc

2 (x; f) as in
(4.126) fully determine the regularization term R(u; f).

Note that we used the same vector field ξ for first- and second-order regulariza-
tion. One possible choice for ξ is ξ(x; f) = ve(x; f) obtained from standard structure
tensor. For the regularization strength, we use the same setting as in Example 4.29,
see (4.115). ⋄

Finally, we remark that the adaptive regularization models above include both
first- and second-order terms. From a theoretical point of view the first-order term
cannot be neglected, since otherwise coercivity of the functional would not hold. For
the compactness of presentation, we will refer to these regularization approaches in
the following chapters as second-order TV regularization, keeping in mind that they
always include first-order regularization.
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Chapter 5

Non-Convex Optimization

5.1 Motivation

In the previous sections we have considered convex minimization problems of the
form

min
u∈K
F(u) (5.1)

with a convex functional F : X → R and a closed convex constraint set K. In this
case, extensive theory on existence and uniqueness of minimizers as been established
in the literature.

In case that either the set K or the functional F(u) are not convex, existence of
a minimizer in general is in question.

In the following, we focus on case that K is convex but F is not and discuss
raising problems. In particular, we consider examples where the non-convexity is
caused by a weighting of the data term with weights depending on ∇u.

For compactness of presentation, let us assume that K = X. Moreover, let us
assume that F(u) takes the form

F(u) :=
∫

Ω

F (x, u(x),∇u(x)) dx (5.2)

with F (x, ξ, ν) : Ω × R × Rd → R. The form in (5.2) is a common assumption for
variational problems, see e.g. [49].

The standard strategy to show existence of a minimizer of (5.2), cf. Remark 3.7
requires three main ingredients, which are (i) the coercivity of F (cf. Definition 3.4),
which guarantees boundedness of a minimizing sequence (uk)k, (ii) pre-compactness
of sublevel sets in a suitable topology, which guarantees convergence of a subse-
quence of (uk)k to some function u∗, and (iii) lower semi-continuity of F(u) (cf.
Definition 3.5), which guarantees that u∗ is a minimizer.

Let us recall a result from Dacorogna [49]:

Theorem 5.1. Let F(u) : W 1,p(Ω) → R be of form (5.2). Then, if F(u) is weakly
lower semi-continuous, it follows that ν → F (x, ξ, ν) is convex.
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(cf. Theorem 3.1 and the subsequent remark in [49]). A consequence of Theorem 5.1
is that functionals of the form (5.2), the property of ν → F (x, ξ, ν) being convex is
essential to prove existence of a minimizer, see e.g. Theorem 3.6.

Let us now assume that F does not have this property. Then, as a remedy, we
can consider a relaxation (see e.g. [148]) of F , which enlarges the set of minimizers
in a way that their existence becomes provable. We can show that if minimizers of
F exist, that they are are also minimizers of the relaxed functional. For this reason,
we refer to the minimizers of the relaxed functional as generalized minimizers. We
discuss this concept of relaxation in detail below.

5.2 Problem Relaxation

In the following, we focus on the functional

F : Wm,p(Ω)→ R ∪ {+∞},

F(u) :=
∫

Ω

F (x, u(x),∇u(x)) dx, (5.3)

where Ω ⊂ Rd and F (x, ξ, ν) is non-convex with respect to ν. Please note that we
are assuming scalar functions u : Ω → R. We will discuss vector-valued functions
in Section 5.3. For the sake of compactness, we restrict the following presentation
to the case m = 1 and p = 1, 2. Sobolev spaces of higher order can be treated
analogously. In case that a higher p is required for the well-posedness of a specific
F , the required coercivity and lower semi-continuity can be considered with respect
to the weak topology of Wm,2(Ω).

As an example for an F (x, ξ, ν), which is non-convex with respect to ν, we
consider the following:

Example 5.2. For p ∈ {1, 2} and u0 : Ω→ R let

F (x, ξ, ν) :=
1

2

(ξ − u0)2(x)

‖ν‖p2
+ α‖ν‖p2. (5.4)

The motivation for introducing (5.4) is as follows. Considering the functional

F(u) =
∫

Ω

F (x, u(x),∇u(x)) dx, (5.5)

with F as in (5.4), we identify the first term 1
2
(ξ−u0)2

‖ν‖p2
as data term and the sec-

ond term α‖ν‖p2 as regularization term. While the regularization term is based on
a penalization ‖∇u‖p2, which is a standard approach, the data term differs from the
standard form 1

2
‖u − f‖2L2 by the factor 1/‖∇u(x)‖p2, which we interpret as an ad-

ditional weighting. The weighting introduced is weak (≈ 0) in regions where the
gradient of u takes large (absolute) values and strong (≈ ∞) in regions where u is
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flat. In Chapter 8 we will consider an application, which requires such a weighting
of the data term.

Please note that we allow F(u) to take the value +∞, such that with the partic-
ular F ((x, u(x),∇u(x)) in (5.4) it is well-defined on W 1,p(Ω). ⋄

Before we address the issue of weakly lower semi-continuity, let us first discuss
appropriate function spaces. As mentioned before, for coercivity we require pre-
compactness of sublevel sets of F . Assuming that the sublevel sets are bounded in
W 1,p(Ω), we require the pro-compactness of bounded sets. While in the case p = 2
it suffices to consider W 1,2(Ω) with the weak topology, in the case p = 1 we have to
extend W 1,1(Ω) to BV (Ω), and use its weak ∗ topology, see Definition 2.2.

Recall that, since F (x, ξ, ν) is non-convex with respect to ν, functional F(u)
cannot be weakly lower semi-continuous on W 1,p(Ω). As a remedy, we consider the
relaxation of F . We briefly recall the main definitions and results below and refer
to [148] for more details.

Definition 5.3 (Weakly Lower Semi-Continuous Relaxation).

- Relaxation in W 1,p(Ω) We define the relaxation of F ∈ W 1,p(Ω) in
X ⊆ W 1,p(Ω) as

F♦(u) := inf
{
lim inf

k
F(uk) | (uk)k ∈ X, uk ⇀ u ∈ W 1,p(Ω)

}
, (5.6)

where we set F♦(u) :=∞, if no such sequence exists.
- Relaxation in BV (Ω) We define the relaxation of F ∈ W 1,p(Ω) in X ⊆
BV (Ω) as

F♦BV (u) := inf
{
lim inf

k
F(uk) | (uk)k ∈ W 1,1(Ω), uk ∗

⇀ u ∈ BV (Ω)
}
.

(5.7)

It can be shown that under certain growth conditions on F (yielding coerciv-
ity of F) that the relaxed functionals are weakly/ weakly ∗ lower semi-continuous
(Lemma 5.4 and Theorem 5.8 in [148]) and that minimizers in the function spaces
W 1,2(Ω) (p = 2) and BV (Ω) (p = 1) exist (Corollary 5.17 in [148] for p = 2 and
Lemma 5.20 for p = 1). We refer to the minimizers of F♦(u) and F♦BV (u) as gener-
alized minimizers of F(u), as the set of generalized minimizers contain minimizers
of F(u), provided that the later exist. To show this, assume that a minimizer u∗ of
the functional F(u) exists. In the case p = 2, we have u∗ ∈ W 1,2(Ω). Considering
the constant sequence uk := u∗, we see that

F(u∗) = inf
u∈W 1,2(Ω)

F(u) ≤ F♦(u
∗) ≤ lim inf

k→∞
F(uk) = F(u∗), (5.8)

and thus F(u∗) = F♦(u
∗). Since F♦(u

∗) by definition cannot attain values less than
infu∈W 1,2(Ω)F(u), u∗ is a minimizer of F♦(u), i.e. a generalized minimizer. This
argumentation carries over to the case p = 1 using the fact that

F♦BV (u) = inf
{
lim inf

k
F(uk) | (uk)k ∈ BV (Ω), u

∗
⇀ u ∈ BV (Ω)

}
, (5.9)
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see [69, proof of Theorem 2].
It remains to provide analytic formulas for the relaxed functionals. For the

relaxation in W 1,2(Ω), it can be shown that

F♦(u) =

∫

Ω

Fc(x, u(x),∇u(x)) dx, , (5.10)

see e.g. [148, Theorem 5.5.], where Fc(x, ξ, ·) is the convex envelope of F (x, ξ, ·) given
as

Fc(x, ξ, ν) := sup {Fc(x, ξ, ν) | Fc ≤ F and Fc(x, ξ, ν) is convex w.r.t. ν} . (5.11)

For our particular function F in Example (5.2), Fc takes the form

Fc(x, ξ, ν) :=

{
(ξ−u(0)(x))2

2‖ν‖p2
+ α‖ν‖p2 if

√
2α‖ν‖p2 > |ξ − u(0)(x)|,√

2α|ξ − u(0)(x)| else,
(5.12)

(cf. Lemma 5.12 in [148]).
For the relaxation in BV (Ω) retrieving an analytic form for the general case is

more involved and requires some additional assumptions on F . We refer to Defini-
tion 5.9, Theorem 5.10 and Corollary 5.11 in [148] for details. Applying this theory
to our example (cf. Theorems 5.14 and 5.18 in [148]), one can show that

F♦BV (u) =

∫

Ω

Fc(x, u(x),∇u(x)) dx+ α d|Ds(u)|(Ω), (5.13)

where |Ds(u)|(Ω) is the singular part of the measure |Du| of u (see Section 2.7).

5.3 Casting Variational Problems into Gradient

Flows

In the previous section we considered functionals F(u) defined on scalar functions
u : Ω→ R, where Ω ⊂ Rd. Let us now consider the vectorial case u : Ω→ Rm. On
F we assume the same form as before:

F(u) :=
∫

Ω

F (x, u(x),∇u(x)) dx (5.14)

with F (x, ξ, J) : Ω× Rm × Rm×d → R.

Example 5.4. Our aim is to introduce an adaptive weighting of the data term

S(u) = 1

2
‖u− u0‖2L2(Ω) (5.15)
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similar to the scalar setting discussed above, but now with vector-valued functions u
and u0. The most general form of a weighting matching the form (5.2) would be

1

2
(u(x)− u0)⊤A(x, u,∇u)(u(x)− u0(x)), (5.16)

where ∇u now is the Jacobian of u and A(x, ξ, J) ∈ Rm×m is positive semi-definite.
Combining such a data term with a regularization term on the Jacobian of u, we

derive

F (x, u,∇u) := 1

2
(u(x)− u0(x))⊤A(x, u,∇u)(u(x)− u0(x)) +

α

p
‖∇u‖pF , (5.17)

where ‖ · ‖F is the Frobenius norm. We are in particular interested in cases where
A(x, ξ, J) is non-convex with respect to J . One particular example would be to set

A(x, ξ, J) = (J(x)⊤J(x))†, (5.18)

where B† for arbitrary matrix B denotes the pseudo-inverse of B. In case of scalar
functions u and u0, this example simplifies to Example 5.2 with p = 2. ⋄

In principle, we can follow the strategy of relaxing the functional as describe in
the previous section. In order to derive an analytic form of the relaxed functional
F♦(u) one then has to calculate the quasi-convex envelope of the function F (x, ξ, J)
with respect to J .

However, for functions of the form (5.17) in the case m > 1 and d > 1, an
analytic form for the quasi-convex envelope is not known so far, and thus efficient
numerical minimization based on this approach is not at hand.

To overcome this issue, we have proposed in [104, 105] to use semi-group theory
to derive a related PDE approach. Below, we recall the general semi-group solution
concept [30] as well as its special adaptation to handle the functional (5.14) with F
as in (5.17)

The convex semi-group solution concept, cf. [30], is briefly summarized as follows.
Let R : H → R ∪ {∞} be a convex functional on a Hilbert space H, and let uα be
a minimizer of the functional

Gu(0)(u) :=
1

2

∥∥u− u(0)
∥∥2
H
+ αR(u) . (5.19)

Then, for a smooth initial function u(0) and α → 0, (uα − u(0))/α converges to an
element of the subgradient ∂R(u(0)) of R. Performing an iterative minimization of
Gu, i.e.

u(k) ∈ argmin
u
Gu(k−1)(u), (5.20)

yields an approximation of the solution of the flow

∂tu ∈ ∂R(u) (5.21)
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at time t = kα. In other words, the variational approach (5.19) approximates the
gradient flow equation (5.21). For convex semi-groups the solutions of diffusion
filtering (i.e. (5.21)) and iteratively applied variational methods (i.e. (5.20)) are
comparable and look rather similar [149].

We expect a similar behavior for the non-convex functional

Fu0(u) :=∫

Ω

1

2
(u(x)− u(0)(x))⊤A(x, u(x),∇u(x))(u(x)− u(0)(x)) +

α

p
‖∇u(x)‖pF dx (5.22)

(u(0) = u0) under the assumption that A(x, ξ, J) can be inverted.
To this end, let us assume that A(x, ξ, J) is indeed invertible. We comment on

non-invertible A at the end of this section. We derive the according flow equation,
which is the gradient flow associated with (5.22), as follows. Please not that this
derivation is obtained in a purely formal manner. First, we introduce the abbrevia-
tions A(u) = A(x, u,∇u) and

S(k−1)(u) :=
1

2

∫

Ω

(u− u(k−1))⊤A(u)(u− u(k−1)) dL . (5.23)

The directional derivative of S(k−1) at u in direction φ (provided it exists) satisfies

∂τS(k−1)(u+ τφ) =

∫

Ω

φ⊤A(u)(u− u(k−1)) dL

+
1

2

∫

Ω

(u− u(k−1))⊤∂φA(u) (u− u(k−1)) dL , (5.24)

where

∂φA(u) := lim
τ→0

A(u+ τφ)− A(u)

τ
. (5.25)

In a similar formal manner, the directional derivative of R(u) = α
p

∫
Ω
‖∇u‖pF at u in

direction φ can be derived and reads

∂τR(u+ τφ) = α

∫

Ω

∇φ⊤ ∇u
‖∇u‖2−p

F

dL. (5.26)

Note, that by the right hand side of (5.26) in the case p = 1 actually the sub-
differential of the total variation semi-norm evaluated in direction φ is meant.

Then, using (5.24) and (5.26), with v(k) := u(k) − u(k−1) and dividing by α > 0,
formally gives the following optimality condition for the minimizer u(k) of Fu(k−1) :

∫

Ω

φ⊤A(u(k))
v(k)

α
+

(v(k))⊤

2α
∂φA(u

(k)) v(k) dL =

∫

Ω

∇φ⊤ ∇u(k)

‖∇u(k)‖2−p
F

dL (5.27)

for all φ ∈ C∞
c (Ω;Rn). Let t > 0 be fixed and k = ⌊t/α⌋ (where ⌊x⌋ denotes the

largest integer values less than or equal to x). Then, as in the convex case, we can
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expect that v(k)/α converges to ∂tu(t) for α→ 0. From that, in turn, it follows that
v(k) → 0. This together with (5.27) then shows that

∫

Ω

φ⊤A(u(t))∂tu(t) dL = −
∫

Ω

∇φ⊤ ∇u(t)
‖∇u(t)‖2−p

F

dL. (5.28)

Applying in a formal way Green’s formula and the fundamental lemma, from (5.28)
the strong formulation is derived and reads

A(u(t))∂tu(t) = div ·
( ∇u(t)
‖∇u(t)‖2−p

F

)
, (5.29)

where u(t) satisfies homogeneous Neumann boundary conditions. Multiplying both
sides of (5.29) by (A(u(t)))−1, we get

∂tu(t) = (A(u(t)))−1 div ·
( ∇u(t)
‖∇u(t)‖2−p

F

)
. (5.30)

Moreover, the initial condition associated with the flow is u(0) := u0.

It remains one open issue, which is the required invertibility of matrix A(u(t)). In
(5.18) we have considered a matrix-valued function A(u(t)), which does not provide
invertible matrices. Let us revisit this example again to show how this issue can be
resolved:

Example 5.5. In the following, for compactness of notation, we omit the arguments
t and x of u. Let

A(u) := (∇u⊤∇u)†. (5.31)

To assert invertibility of A(u), we regularize this matrix by adding ε Id before apply-
ing the pseudo-inverse, which then can be replaced by the inverse:

Aε(u) := (∇u⊤∇u+ ε Id)−1. (5.32)

We can now apply the above concept with Aε(u) instead of A(u) and derive

∂tu = (∇u⊤∇u+ ε Id) div

( ∇u
‖∇u‖2−p

F

)
. (5.33)

Now, we can formally let ε tend to zero and derive

∂tu = (∇u⊤∇u) div

( ∇u
‖∇u‖2−p

F

)
. (5.34)

⋄

69



CHAPTER 5. NON-CONVEX OPTIMIZATION

Remark 5.6. For scalar data (m = 1) and p = 1 the equation (5.34) reads as

∂tu = ‖∇u‖22 div

( ∇u
‖∇u‖2

)
. (5.35)

One recognizes that (5.35) differs from the mean curvature flow (MCF) equation
(see e.g. [112]), given as

∂tu = ‖∇u‖2 div

( ∇u
‖∇u‖2

)
(5.36)

only by the power of the leading factor ‖∇u‖2.
As an alternative to A as in (5.31), we can consider

A(u) := ((∇u⊤∇u) p
2 )†, (5.37)

where the power p
2
of the matrix (∇u⊤∇u) is defined via spectral decomposition. Of

particular interest is the case p = 1, because then the functional (5.22) is invariant
under affine rescaling of the image intensity. In this case the semi-group approach
results in the gradient flow

∂tu = ((∇u)⊤∇u) 1
2 div

( ∇u
‖∇u‖2

)
, (5.38)

which, in the scalar case, is exactly the MCF equation. For scalar radial-symmetric
monotonic data an analytical comparison of the solutions of (5.38) and the MCF
equation (5.36) has been provided in [50].

Despite the fact that it is not an equivalent reformulation of the variational
problem (5.14), we propose to solve PDE (5.33) as an alternative to tackling the
minimization of (5.14) with the considered non-convex F . We will discuss corre-
sponding applications in Chapter 8.
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Chapter 6

Quasi-Variational Inequalities for
Regularization

6.1 Introduction

In this chapter, we generalize the variational approach from Chapter 4. Please recall,
that in Chapter 4, we considered

min
u∈X
F(u; v) := min

u∈X
S(u) +R(u; v), (6.1)

to solve an inverse problem
A(u) = f (6.2)

for some operator A and data f . The variable v in the regularization term R(u; v)
in (6.1) was is introduced to allow adaptivity. In Chapter 4 we considered data-
driven adaptive regularization, where the adaptivity was determined based on the
(pre-smoothed) data v = f . The core idea of this data-driven adaptivity is that
prominent image structures such as edges, corners and intensity gradients of the
unknown function utrue, which has to be reconstructed from f , are estimated based
on the given data f . These data, however, are only linked to u via the operator A
(e.g. identity in the case of denoising, a blur operator in case of deblurring and a
restriction to a subdomain of Ω in case of inpainting) and in addition are effected
by noise, so that the estimate of the sought image structures might be inaccurate.

Instead of using v = f , it would be more appropriate to determine the image
structures directly on the reconstructed image u as an approximation of the unknown
function utrue, i.e. to consider a solution-driven adaptivity instead of a data-driven
one.

One alternative would be to directly replace the function f in R(u; f) by u, such
that the optimization problem becomes

min
u∈X
S(u) +R(u; u). (6.3)

By this modification, however, the regularization problem in general becomes non-
convex, so that existence and uniqueness of a minimizer as well as the numerical
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treatment of the minimization problem become an issue. A remedy can be to con-
sider a relaxation of this problem, as it is for example done in [68].

Here, we are heading for a different strategy: We first consider an arbitrary
function u0 ∈ X and the convex optimization problem

u := argmin
u∈X

S(u) +R(u; u0). (6.4)

Please note that in order to have u well-defined, we required the strict-convexity of
S(u), which guarantees the uniqueness of the minimizer.

We then search for a fixed point u∗ of the mapping

u0 7→ T (u0) := u. (6.5)

It turns out that providing existence and uniqueness theory is easier for the fixed
point problem than for the non-convex optimization problem (6.3). Moreover, the
fixed point problem is the more natural approach: many existing methods in image
processing and computer vision, such as iterated non-local means [32], consider
an outer iteration for updating auxiliary or guiding variables and implicitly are
expecting a fixed point.

We illustrate our approach by an example:

Example 6.1. We revisit Example 4.25, where we considered an adaptive regular-
ization for the task of denoising. The data term in this example is chosen as

S(u) := 1

2
‖u− f‖2L2 (6.6)

with data f ∈ L2(Ω). As regularization term we use

R(u; v) = sup
{∫

Ω

u divϕ dL | ϕ ∈ C l
c(Ω;R

2), ϕ(x) ∈ Dloc(x; v)
}
, (6.7)

where each Dloc(x; v) is a closed ball centered at 0 with radius

α(x; v) = max(αmax(1− κ‖∇vσ‖), ε). (6.8)

Recall that by vσ we denote the convolution of v with a Gaussian kernel Kσ with
standard deviation σ. Parameter κ > 0 in (6.8) controls the edge sensitivity, while
max(·, ε) with a small ε > 0 asserts the positive boundedness α from below, as
required for existence theory (cf. Assumption 4.10 (iv)).

In Example 4.25, we have chosen an data-driven adaptivity by setting v = f .
In order to cope with the noise in the data f , in general a strong pre-smoothing
is required, which, however, besides eliminating noise blurs the input and removes
weak edges. A pre-smoothing thus comes with a trade-off between being robust against
noise and a preservation of edges.
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A direct solution-driven approach would consist in first assuming u ∈ W 1,1(Ω)
and setting

R(u) =
∫

Ω

α(x, u)‖∇u‖2 dL, (6.9)

and then extending the functional to the space BV (Ω):

R(u) := sup
{∫

Ω

u(x) div(α(x, u)ϕ(x)) dL | ϕ ∈ C l
c(Ω;R

2), ϕ(x) ∈ B1(0)
}
. (6.10)

Please note that R(u) in (6.9) and (6.10) is non-convex. Assuming a sufficiently
high regularity of α(x, u), one can show weakly lower semi-continuity of R(u) in
(6.10). Together with coercivity, the existence of a minimizer can be shown. How-
ever, proving uniqueness of a minimizer of the corresponding F(u) and providing an
efficient numerical approach to minimize F(u) are open issues.

At this point, one can think of applying a relaxation approach as discussed in
Chapter 5. In [67] we have shown for one particular adaptive regularization approach
that from a theoretical point of view this is an option. In particular, with this theory
one can show existence of generalized minimizers. However, the optimization of the
relaxed problems is an open issue.

We therefore propose a different approach.

In this approach we consider α(x, u0) for some given function u0 and Dloc(x, u0)
and R(u; u0) as defined above. With u0 fixed, the functional F(u; u0) is strict-convex
with respect to u (due to the strict-convexity of S(u)), and thus a unique minimizer
u exists. Then, we search for a fixed point of T : u0 7→ u.

We stress that one benefit of our solution-driven approach is, that the approach
has not to be robust against noise, so that we can significantly reduce σ. For theoret-
ical reasons, however, a small σ, is needed to guarantee that ∇u(x) is well-defined.
(In practice, after discretization, this is not an issue.) ⋄

In the next section we provide a general framework for solution-driven adaptive
TV regularization.

6.2 Approach

For solution-driven adaptive regularization we consider regularization terms of the
form

R(u; u0) := sup
{∫

Ω

uDϕ dL | ϕ ∈ D(u0)
}
, (6.11)

with some differential operator D. The constraint set D(u0) is given as

D(u0) :=
{
ϕ ∈ C l

c(Ω;R
m), ϕ(x) ∈ Dloc(x; u0)

}
, (6.12)
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where the local constraint sets Dloc(x, u0) depending on some arbitrary function u0.
Recall that we consider functionals of the form

F(u; u0) := S(u) +R(u; u0), (6.13)

where S : L2(Ω)→ R is the data term. One special case we focus on below is

S(u) = 1

2
‖Au− f‖2L2(Ωf )

(6.14)

with some linear operator A : L2(Ω)→ L2(Ωf ).
Now, we turn to the fixed point problem introduced above. To this end, let u

denote the minimizer of F(u; u0) (assuming that F is strictly convex and thus u is
unique). We are interested in finding a fixed point u∗ of

u0 7→ T (u0) := u = argmin
u∈X

F(u; u0). (6.15)

We will provide existence theory for this fixed point problem in Section 6.3.

In the discretized setting and under sufficient conditions on the data term, it
turns out that this fixed point problem is equivalent to a quasi-variational inequality
problem (QVIP), for which comprehensive theory is available in the literature, see
e.g. [12, 20, 37, 127]. In the case S(u) = 1

2
‖Au − f‖22 we obtain this QVIP as

follows. Moving to a discrete formulation of the problem, we now assume that
u, f ∈ Rn are the function values at the n nodes of an equidistant d-dimensional
grid. Moreover, we replace the linear operator A by a n × n matrix, also denoted
by A. In what follows we assume that A is invertible, which is required for S(u) to
be strictly convex. We denote by L the discretization of the divergence operator D
(with appropriate boundary conditions). The optimization problem we consider in
the discrete setting is given as

argmin
u∈Rn

F(u; u0) =
1
2
‖Au− f‖22 + sup

p∈D(u0)

(Lp)⊤u. (6.16)

The constraint set D(u0) in (6.16) is given as

D(u0) = {p ∈ Rnd, pi ∈ Dloc
i (u0), i = 1, . . . , n}. (6.17)

In (6.17) we use the notation p = (p1, p2, . . . , pn)
⊤ with pi ∈ Rd, i = 1, . . . , n. The

local constraint sets Dloc
i (u0) ⊂ Rd are provided now for every grid node i. Again,

we assume them to be non-empty, closed, convex and depending on u0.
To describe our ansatz, we consider first the dual problem of (6.16), which is

derived as follows. The optimality condition for u reads

A⊤(Au− f) + Lp = 0. (6.18)

We deduce from (6.18) that

u = (A−1 A−⊤)(A⊤ f − Lp) = A−1(f − A−⊤ Lp),

Au = f − A−⊤ Lp,
(6.19)
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where A−⊤ := (A⊤)−1. Inserting (6.19) in (6.16) and using the abbreviation M :=
A−⊤ L , we obtain

F∗(p) = 1
2
‖Au− f‖22 + (Lp)⊤u

= 1
2
‖A−⊤ Lp‖22 + (A−1 f)⊤Lp− (A−1 A−⊤ Lp)⊤Lp

= 1
2
‖A−⊤ Lp‖22 + f⊤ A−⊤ Lp− (A−1 A−⊤ Lp)⊤Lp

= −1
2
‖M p‖22 + f M p− (M p)⊤ M p

= −1
2
‖M p− f‖22 + 1

2
‖f‖22.

(6.20)

The dual formulation of (6.16) therefore reads as

sup
p∈D(u0)

F∗(p) = sup
p∈D(u0)

−1
2
‖M p− f‖22 + 1

2
‖f‖22. (6.21)

When maximizing F∗(p) over D(v), the constant term 1
2
‖f‖22 can be omitted without

changing the optimum. Moreover, by switching from the maximization of F∗(p) to
the minimization of −F∗(p), we can reformulate the dual problem (6.21) as

argmin
p∈D(u0)

G(p), G(p) := 1
2
‖M p− f‖22. (6.22)

From a solution p of the dual problem (6.22) we can retrieve the solution u of the
primal problem (6.16) by u = A−1(f −M p). As necessary and sufficient optimality
condition of (6.22) we obtain the following variational inequality:

find p ∈ D(u0) such that

〈∇G(p), p− p〉 ≥ 0 ∀p ∈ D(u0)

⇔ 〈M⊤(M p− f), p− p〉 ≥ 0 ∀p ∈ D(u0).

(6.23)

Recall that we are interested in a fixed point u∗ of

u0 7→ T(u0) := argmin
u∈X

F(u; u0), (6.24)

i.e. u∗ = u = T(u∗). As we will see below, it makes sense to denote the corresponding
dual variable, i.e. the solution p of (6.23) with the choice u0 = u∗ by p∗. Inserting
p = p∗ and u0 = u∗ = A−1(f −M p∗) into (6.23), we obtain the quasi-variational
inequality problem (QVIP)

find p∗ ∈ D̃(p∗) such that

〈∇G(p∗), p− p∗〉 ≥ 0 ∀p ∈ D̃(p∗)
⇔ 〈M⊤(M p∗ − f), p− p∗〉 ≥ 0 ∀p ∈ D̃(p∗),

(6.25)

where D̃(p) := D(A−1(f −M p)). Please note that D̃ actually depends on M p, a
fact which we will make use of in the following sections.

Obviously, u∗ = A−1(f −M p∗) is a fixed point of T if and only if p∗ ∈ D̃(p∗)
solves the QVIP (6.25).

To illustrate our approach, we revisit Example 6.1 from above.
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Example 6.2. Recall that in Example 6.1 we have considered the task of image
denoising, where A = Id. We have chosen a regularization term R(u; v) based on
first-order total variation, i.e. D = div, where the regularization strength α(x, v)
was locally adapted based on the gradient of v.

Following the discretization procedure discussed above, we consider a regular grid
with n nodes, on which we approximate the divergence operator by finite-differences.
We denote the resulting discrete operator by L : Rnd → Rn. Recall that

R(u; v) := sup
p∈D(v)

u⊤ M p, (6.26)

where D(v) is the cross-product of the n local constraint sets Dloc
i (v), i = 1, . . . , n,

which in this example are chosen to be balls of radius αi(v). Please note that we
replaced the function ϕ ∈ C1

c (Ω;R
d) by a discrete vector p ∈ Rnd.

Similar to the continuous setting, by means of the adjoint we can shift the oper-
ator L in (6.26) to u and get

R(u; v) = sup
p∈D(v)

u⊤Lp =
n∑

i=1

αi(v)‖(−L⊤u)i‖2, (6.27)

where (x)i denotes the i-th entry of x. We observe that −L⊤ : Rn → Rnd is a dis-
cretization of the gradient operator applied to all nodes i simultaneously. However,
in order to avoid artifacts at the image borders, it is suitable to use homogeneous
Neumann boundary conditions when discretizing the gradient. We therefore choose
a discretization L of div such that −L⊤ respects these boundary conditions, e.g. aim-
ing at right-sided finite difference with homogeneous Neumann boundary conditions
for the gradient we choose in left-sided finite-difference with homogeneous Dirichlet
boundary conditions for div.

Recall that the adaptive regularization parameter α(x, u) in the continuous setting
was chosen as

α(x; v) = max(αmax(1− κ‖∇vσ(x)‖), ε). (6.28)

When discretizing (6.28), we also make use of −L⊤ as an approximation for the
gradient. Therefore, (6.28) turns into

w := −L⊤(Kσ ∗ v),
αi(v) := max{α0(1− κ‖wi‖2), ε}, i = 1, . . . , n.

(6.29)

where Kσ ∗ v now denotes the discrete convolution with a Gaussian kernel Kσ and
w = (w1, . . . , wn)

⊤ with wi ∈ Rd.
We now follow the proposed approach for a solution-driven adaptivity. In the

case of denoising we have A = Id and M = L. We consider v = u0 for some fixed
function u0 ∈ BV (Ω). In order to switch to the dual formulation we have to express
D(u0) in terms of p0, where u0 = f − Lp0. To this end, we set

w := −L⊤(Kσ ∗ (f − Lp0)),

α̃i(p0) := max{α0(1− κ‖wi‖2), ε},
(6.30)
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and D̃(p0) to be the cross product of Bα̃i(p0)(0), i = 1, . . . , n.

Finding a fixed point u∗ of

u0 7→ argmin
u∈X

S(u) +R(u; u0) (6.31)

then is equivalent to solving the QVIP

find p∗ ∈ D̃(p∗) such that

⇔ 〈L⊤(Lp∗ − f), p− p∗〉 ≥ 0 ∀p ∈ D̃(p∗),
(6.32)

where we can retrieve u∗ from p∗ by u∗ = f − Lp∗. ⋄

6.3 Theory for the Continuous Case

Please recall that we assume Ω ⊂ Rd to be open, bounded and with Lipschitz-
boundary. In this section, we focus on strict convex data terms S : L2(Ω)→ R. The
appropriate function space for our variational approach is X = L2(Ω) ∩ BV l(Ω),

together with the weak convergence from Definition 4.6, denoted by
X
⇀.

In the following, we show for a specific class of regularization terms that there
exists a fixed point of the operator

T : L2(Ω)→ X, T(v) := argmin
u∈K

F(u; v), (6.33)

where K ⊆ X is some convex set. This restriction is twofold. Firstly, we focus on
first-order regularization (i.e. l = 1). The extension to higher order regularization
terms is straightforward. Secondly, we rewrite the regularization term R(u; v) as

R(u; v) := sup

{∫
u div(Q(v)ϕ) dL | ϕ ∈ C1

c (Ω;R
2), ϕ(x) ∈ Dloc

}
, (6.34)

for some function Q(v) = Q(x, v) : Ω × L1(Ω) → Rd×d and with a d-dimensional
constraint set Dloc now being constant with respect to x. The standard examples
for Dloc are Dloc = B1(0) and Dloc = {x ∈ Rd | ‖x‖∞ ≤ 1}. Obviously, with these
restrictions on Q(v) and D, we cannot represent every instance covered by (6.11)
by the more specific form (6.34), in particular if Dloc(x, v) has a complicated shape.
However, (6.34) covers the first-order case examples mentioned in Chapter 4.

In the following, we will show that a fixed point of operator T defined with
regularizers of the form (6.34) exists. A generalization of this theory to arbitrary
regularizers of the form (6.11) and proving uniqueness are subject to future work.

Before turning to the existence of a fixed point, let us start with the well-
posedness operator T.
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6.3.1 Well-Posedness of Operator T

In order to make T well-defined, we require that a unique minimizer of F(u; v) with
respect to u exists. (If several minimizers of F(u; v) existed, we could also define
operator T as set-valued. However, it is unclear how adaptivity on a set of functions
can be defined in a meaningful way.)

Since we changed the formulation of R(u; v) in (6.34) compared to (6.11), the
requirements for existence and uniqueness of a minimizer of F(u; v) slightly change,
compared to Assumption 4.10.

Assumption 6.3.

(i) K ⊆ X is non-empty, convex and closed with respect to the weak convergence
in X.

(ii) S : L2(Ω)→ R is strictly convex and lower semi-continuous with respect to the
weak convergence in L2(Ω).

(iii) There exist constants c1, c2 > 0 such that ‖u‖L2 ≤ c1S(u) + c2 for any u ∈ K.

(iv) There exist Cmin > 0 and Cmax > 0 independent from v ∈ L1(Ω) such that

Cmin TV(u) ≤ R(u; v) (6.35)

and
‖Q(x, v)‖2 ≤ Cmax. (6.36)

(In particular, this guarantees R(u; v) ≤ C TV(u) for some C > 0.)

Remark 6.4. We remark that compared to Assumption 4.10 two properties changed.
Firstly, we added the strict convexity of S in view of uniqueness of a minimizer.
Secondly, we replaced Assumption 4.10 (iv) by Assumption 6.3 (iv), cf. also (4.42)
in Proposition 4.14.

Example 6.5. The following two examples yield an anisotropic TV regularization:

1. Consider Q(x, v) for fixed x, v to be symmetric with eigenvalues λ1, λ2 such
that Cmin ≤ λi ≤ Cmax, i = 1, 2 and D = B1(0) ⊂ Rd, cf. Example 4.26.

2. Consider Q(x, v) to be a rotation matrix and D = {x ∈ Rd | ‖x‖∞ ≤ 1}.

In both cases Assumption 6.3 (iv) is satisfied. ⋄

Proposition 6.6. Let Assumption 6.3 be satisfied. Then, for given v ∈ L2(Ω),
F(·; v) has a unique minimizer u ∈ K ⊆ BV (Ω). Moreover, there exists an Rmax ≥ 0
independent from v, such that ‖u‖BV ≤ Rmax. Thus T(v) : L

2(Ω)→ U , where

U := {u ∈ K | ‖u‖BV ≤ Rmax}, (6.37)

is well defined.
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Analogously to Section 4.4, we require convexity, weakly ∗ lower semi-continuity
of R(u; v) and boundedness from below/above by the TV semi-norm:

Lemma 6.7. Let Assumption 6.3 (iv) be satisfied. Then, the functional R(u; v)
defined in (6.34) with fixed v is convex and lower semi-continuous with respect to
the weak ∗ convergence in BV (Ω). Moreover,

Cmin√
l
(TV(u)) ≤ R(u; v) ≤ Cmax TV(u). (6.38)

Proof. Convexity follows from the fact that R(u; v) is the supremum of convex
functions. The proof of the weak ∗ lower semi-continuity is analogous to the proof of
Proposition 4.14. Finally, (6.38) follows directly from Assumption 6.3 (iv).

Remark 6.8. From the weak lower semi-continuity of S in L2(Ω), cf. Assump-
tion 6.3 (ii), the weak ∗ lower semi-continuity of R (Lemma 6.7) and of ιK (cf.
Remark 4.13) it follows the weak lower semi-continuity of F with respect to the
convergence in X (cf. Definition 4.6).

Proof of Proposition 6.6. The proof of existence is analogous to the proof of The-
orem 4.11: From strict convexity of F(·; v) uniqueness follows (cf. Proof of Theo-
rem 4.16).

6.3.2 Existence of a Fixed Point

Under the following assumption in addition to Assumption 6.3 we can prove exis-
tence of a fixed point of T:

Assumption 6.9.

(i) D takes the form D = {x ∈ Rd | ‖x‖p ≤ 1} with p ∈ {2,∞}.

(ii) Q(x, v) is continuously differentiable with respect to x and Lipschitz continuous
with respect to v, i.e.

‖(Q(x, v1)−Q(x, v2))w‖q ≤ Cl‖w‖2‖v1 − v2‖L1 (6.39)

for some Cl > 0, norm ‖ · ‖q with 1
p
+ 1

q
= 1 on the left hand side and norm

‖ · ‖2 of w on the right hand side of (6.39).

Remark 6.10. Assumption 6.9 (i) will allow us to express R(u, v) for smooth func-
tions u ∈ C∞(Ω) as

R(u, v) =
∫

Ω

‖Q(x, v)⊤∇u(x)‖q dx. (6.40)

(We will prove this equality below.) Assumption 6.9 (ii) therefore will provide
Lipschitz-continuity of v 7→ R(u, v).
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Theorem 6.11. Let Assumptions 6.3 and 6.9 be satisfied. Then, there exists a fixed
point u∗ of T(v) (cf. (6.33)), i.e. u∗ minimizes F(u; u∗) in (6.13).

The proof of Theorem 6.11 requires the following definition, proposition and
theorem.

Definition 6.12. We consider the weak topology in L2(Ω) (cf. [4]). We call T :
L2(Ω) → L2(Ω) weakly upper semi-continuous if for any weakly closed subset B of
im(T) the set T−1(B) is weakly closed.

Proposition 6.13. Recall that U = {u ∈ K | ‖u‖BV ≤ Rmax} (cf. (6.37)) with
convex K ⊆ L2 ∩ BV (Ω). The mapping v 7→ T(v) from K to U ⊆ K ⊆ L2(Ω) is
weakly upper semi-continuous with respect to the weak topology in L2(Ω).

The proof will we given below.

Theorem 6.14 (Theorem 2.3 in [3]). Let H be a Banach space and let K be a
closed convex subset of H. Then any weakly compact, weakly sequentially upper
semi-continuous map T : U → U has a fixed point.

Proof. See proof of Theorem 2.3. in [3].

We will first prove Proposition 6.13, for which we require the following definition
and lemmas, and then provide the proof of Theorem 6.11.

Definition 6.15. Let η be the mollifier

η(x) :=

{
c exp

(
− 1

1−|x|2
)

if |x| < 1,

0 else,
(6.41)

with the constant c > 0 adjusted to guarantee
∫
R2 η(x) dL (cf. [55, Sect. 4.2.1])).

Moreover, we define for any s > 0

ηs(x) :=
1

sd
η
(x
s

)
. (6.42)

Lemma 6.16. Let Q(x) : Ω→ Rd×d be Lipschitz-continuous with constant L. Then,
for any ϕ ∈ L∞(Ω;R2),

‖ηε ∗ (Qϕ)−Q(ηε ∗ ϕ)‖L∞ ≤ CL‖ϕ‖L∞ ε (6.43)

holds for a constant C > 0 independent from Q and ϕ.
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Proof.
‖(ηε ∗ (Qϕ))(x)−Q(ηε ∗ ϕ)(x)‖2
=
∥∥
∫

Ω

ηε(x− y)Q(y)ϕ(y)− ηε(x− y)Q(x)ϕ(y) dy
∥∥
2

≤
∫

Ω

ηε(x− y)L‖x− y‖2‖ϕ(y)‖2 dy

≤ L‖ϕ‖L∞

∫

Ω

ηε(x− y)‖x− y‖2 dy

≤ L‖ϕ‖L∞

∫

Rd

ηε(x− y)‖x− y‖2 dy

= L‖ϕ‖L∞

∫

Rd

ηε(y)‖y‖2 dy

= L‖ϕ‖L∞

∫

Rd

1

εd
η
(y
ε

)
‖y‖2 dy.

(6.44)

We perform a change of variables ỹ = y
ε
, dỹ = dy

εd
:

L

∫

Rd

1

εd
η
(y
ε

)
‖y‖2 dy = L

∫

Rd

η(ỹ)‖ỹ‖2ε dỹ ≤ L

∫ ∞

0

rd−1Vd η̃(r) dr ε (6.45)

with η̃(r) := η(r e1) using the radial symmetry of η and Vd being the volume of the
d-dimensional unit sphere Sd. Note that

∫∞
0

rd−1Vdη̃(r) is bounded by some Cη > 0.
Inserting (6.45) into (6.44), we obtain

‖ηε ∗ (Qϕ)−Q(ηε ∗ ϕ)‖L∞ ≤ L‖ϕ‖L∞Cηε. (6.46)

Lemma 6.17. For any u ∈ BV (Ω) there exists (uk)k ∈ C∞(Ω) such that uk L1

→
u, TV(uk) → TV(u) and R(uk, vi) → R(u, vi) simultaneously for a finite set of
{vi}ni=1 ⊂ L1(Ω).

Proof. For fixed v the proof follows the proof of [55, Thm. 2, Sect. 5.2], with some
modifications. For the reader’s convenience, instead of just listing the required
modifications, we provide the full modified proof, also adapting the notation. We
define P := {C1

c (Ω,R
d), ‖ϕ(x)‖p ≤ 1}. From the equivalence of norms in Rd we find

that there exists a constant Cϕ > 0 such that for all ϕ ∈ P
‖ϕ(x)‖2 ≤ Cϕ. (6.47)

Now, let ε > 0 be fixed. For a m ∈ N,m > 0 and k ∈ N we define open sets

Ωk :=

{
x ∈ Ω | dist(x, ∂Ω) > 1

m+ k

}
, (6.48)

where dist(x,A) is the distance of point x to set A, and choose m large enough to
guarantee

TV(u)(Ω \ Ω1) < ε, (6.49)
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where TV(u)(B) is the variation measure of u evaluated on the set B. Set Ω0 := ∅
and define Vk := Ωk+1 \ Ωk−1. Please note that each x ∈ Ω is contained in at most
three sets Vk. Moreover, let {ζk}∞k=1 be a sequence of smooth functions with

ζk ∈ C∞
c (Vk), 0 ≤ ζk ≤ 1 and

∞∑

k=1

ζk = 1 on Ω. (6.50)

Let ηs, s > 0 be the mollifier from Definition 6.15. For each k, select εk > 0 small
enough such that for

supp(ηεk ∗ (uζk)) ⊂ Vk,∫

Ω

|ηεk ∗ (uζk)− uζk| dL <
ε

2k
,

∫

Ω

‖ηεk ∗ (u∇ζk)− u∇ζk‖2 dL <
ε

2k
.

(6.51)

Define

uε :=
∞∑

k=1

ηεk ∗ (uζk). (6.52)

For each x ∈ Ω there are only finitely many terms in (6.52), which are non-zero on
a neighborhood of x. Thus, uε ∈ C∞(Ω). Since also u =

∑∞
k=1 uζk, we find from

(6.51) that

‖uε − u‖L1(Ω) ≤
∞∑

k=1

∫

Ω

|ηεk ∗ (uζk)− uζk| dL < ε. (6.53)

Thus, uε → u in L1(Ω). Moreover, for ϕ ∈ P , we have

∫

Ω

uε divϕ dL =

∫

Ω

u

(
∑

k

ζk div(ηεk ∗ ϕ)
)

dL ≤ 3Cϕ TV(u), (6.54)

where we used that for every x ∈ Ω there exist at most three ζk(x) > 0. Taking the
supremum over all such ϕ we find

TV(uε) ≤ 3Cϕ TV(u) <∞. (6.55)

Both convergence in L1(Ω) and boundedness of TV(uε) provide that uε
∗
⇀ u. Then,

due to the weak ∗ lower semi-continuity of R(u; v) (cf. Proposition 4.14) we have

R(u; v) ≤ lim inf
ε→0

R(uε; v). (6.56)
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For any ϕ ∈ P
∫

Ω

uε div(Q(v)ϕ) dL =
∞∑

k=1

∫

Ω

(ηεk ∗ (uζk)) div(Q(v)ϕ) dL

=
∞∑

k=1

∫

Ω

uζk div(ηεk ∗ (Q(v)ϕ)) dL

=
∞∑

k=1

∫

Ω

u div(ζk(ηεk ∗ (Q(v)ϕ))) dL −
∞∑

k=1

∫

Ω

u∇ζk(ηεk ∗ (Q(v)ϕ)) dL

=
∞∑

k=1

∫

Ω

u div(ζk(ηεk ∗ (Q(v)ϕ))) dL
︸ ︷︷ ︸

:=Iε1

−
∞∑

k=1

∫

Ω

ϕ⊤Q(v)(ηεk ∗ (u∇ζk)− u∇ζk) dL
︸ ︷︷ ︸

=:Iε2

,

(6.57)
where we used the fact

∑∞
k=1∇ζk = 0 on Ω. Since ‖Q(x, v)ϕ(x)‖2 ≤ CmaxCϕ (cf.

Assumption 6.3 (iv) and (6.47)), we find that ‖ζk(x)(ηεk ∗ (Q(v)ϕ))(x)‖2 ≤ CmaxCϕ.
Thus, we can bound Iε1 by

|Iε1 | ≤
∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣+

∞∑

k=2

∣∣
∫

Ω

u div(ζk(ηεk ∗ (Q(v)ϕ))) dL
∣∣

≤
∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣+

∞∑

k=2

CmaxCϕ TV(u)(Vk),

(6.58)
Since each point in Ω belongs to at most three sets Vk, together with Vk ⊆ Ω \ Ω1

and (6.49), (6.58) can be bounded by

|Iε1 | ≤
∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣+ 3CmaxCϕ TV(u)(Vk)

≤
∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣+ 3CmaxCϕ TV(u)(Ω \ Ω1)

≤
∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣+ 3CmaxCϕε.

(6.59)

Next, we apply Lemma 6.16:

∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣

≤
∣∣
∫

Ω

u div(ζ1(Q(v)(ηε1 ∗ ϕ))) dL
∣∣+ CηCϕL(v) TV(u)ε, (6.60)

where L(v) is the Lipschitz-constant of x 7→ Q(x, v). Since ϕ ∈ P and thus ηε1 ∗ϕ ∈
P , we have

|
∫

Ω

u div(ζ1(Q(v)(ηε1 ∗ ϕ))) dL
∣∣ ≤ R(u; v). (6.61)
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Combining (6.60) and (6.61), we obtain

∣∣
∫

Ω

u div(ζ1(ηε1 ∗ (Q(v)ϕ))) dL
∣∣ ≤ R(u; v) + CηCϕL(v) TV(u)ε. (6.62)

Inserting (6.62) into (6.59), we end up with

|Iε1 | ≤ R(u; v) + (CηCϕL(v) TV(u) + 3CmaxCϕ)ε. (6.63)

Now, we bound the term Iε2 : Since ‖Q(x, v)ϕ(x)‖2 ≤ CmaxCϕ we obtain from (6.51)
that

|Iε2 | = |
∞∑

k=1

∫

Ω

ϕ⊤Q(v)(ηεk ∗ (u∇ζk)− u∇ζk) dL| ≤ CmaxCϕ

∞∑

k=1

ε

2k
= CmaxCϕε.

(6.64)
Using bounds (6.63) and (6.64) in (6.57), we find

∫

Ω

uε div(Q(v)ϕ) dL ≤ R(u; v) + (4CmaxCϕ + CηCϕL(v) TV(u))ε. (6.65)

Taking in (6.65) the supremum over all ϕ ∈ P , we obtain

R(uε; v) ≤ R(u; v) + (4CmaxCϕ + CηCϕL(v) TV(u))ε. (6.66)

Both (6.56) and (6.66) together provide

|R(uε; v)−R(u; v)| ≤ (4CmaxCϕ + CηCϕL(v) TV(u))ε (6.67)

for ε small enough. Please note that the choice of Ωk, Vk, εk, ζk and ηεk was in-
dependent from v. Thus, for the same sequence (uε)ε we get a uniform conver-
gence for a finite set of {vi}ni=1. Moreover, as we can express TV(u) as R(u; v)
with Q(v) = Id and p = 2 (yielding Cϕ = 1 and L(v) = 1), (6.67) provides also
|TV(uε)− TV(u)| < (4Cmax + Cη TV(u))ε.

Lemma 6.18. Let R(u; v) be as in (6.34) with D = {x ∈ R2 | ‖x‖p ≤ 1} for
p ∈ {2,∞}. Then, for every u ∈ C∞(Ω) we have

R(u; v) =
∫

Ω

‖Q(x, v)⊤∇u(x)‖q dx (6.68)

with 1
p
+ 1

q
= 1.

Proof. We show the claim for p = 2. The case p =∞ is analogous. For the simplicity
of notation, we drop the argument v of Q as well as x for any function, if it is clear
from the context.

Recall that P = {C1
c (Ω,R

d), ‖ϕ(x)‖2 ≤ 1} (p = 2). For u ∈ C∞(Ω) we have

sup
ϕ∈P

∫

Ω

u div(Qϕ) dL = sup
ϕ∈P

∫

Ω

∇u⊤(Qϕ) dL

≤ sup
ϕ∈P

∫

Ω

‖Q⊤∇u‖2‖ϕ‖2 dL ≤
∫

Ω

‖Q⊤∇u‖2 dL.
(6.69)
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We show equality in (6.69). Define ϕ ∈ P as

ϕ(x) :=

{
Q(x)⊤∇u(x)

‖Q(x)⊤∇u(x)‖2 if ∇u(x) 6= 0,

0 else,
(6.70)

and

ζk(x) =

{
1 if dist(x, ∂Ω) ≥ 1

k
,

0 else.
(6.71)

For fixed ε > 0 choose k large enough such that

∣∣∣∣
∫

Ω

ζk dL −
∫

Ω

1 dL
∣∣∣∣ ≤ ε. (6.72)

Moreover, let ϕjk := η 1
jk

∗ (ζkϕ) with jk large enough such that ‖ϕjk − ζkϕ‖∞ ≤ ε.

Then, ϕjk ∈ P and

∣∣∣∣
∫

Ω

‖Q⊤∇u‖2 dL −
∫

Ω

u div(Qϕjk) dL
∣∣∣∣

(6.70)
=

∣∣∣∣
∫

Ω

(Q⊤∇u)⊤ϕ dL −
∫

Ω

(Q⊤∇u)ϕjk dL
∣∣∣∣

≤Cmax‖∇u‖∞‖ϕ− ϕjk‖L1 .

(6.73)

We bound ‖ϕ− ϕjk‖L1 by

‖ϕ− ϕjk‖L1 ≤ ‖ϕ− ζkϕ‖L1 + ‖ζkϕ− ϕjk‖L1 ≤ 2ε. (6.74)

Combining (6.73) and (6.74) gives

∣∣∣∣
∫

Ω

‖Q⊤∇u‖q dL −
∫

Ω

u div(Qϕjk) dL
∣∣∣∣ ≤ 2Cmax ‖∇u‖∞ε. (6.75)

Thus, we have found a sequence ϕjk ∈ P such that

∫

Ω

u div(Qϕjk) dL →
∫

Ω

‖Q⊤∇u‖2 dL (6.76)

and equality in (6.69) holds.

fformall

Lemma 6.19. Let u ∈ U := {u ∈ X | ‖u‖BV ≤ Rmax} and let vk → v in L1(Ω).
Then, we have R(u; vk) → R(u; v) and F(u; vk) → F(u; v) uniformly for every
u ∈ U .
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Proof. We show that for arbitrary u ∈ U and v1, v2 ∈ L1(Ω)

|R(u; v1)−R(u; v2)| ≤ Cl Rmax ‖v1 − v2‖L1 , (6.77)

from which the claim for R(u; v) follows. Let us first consider a fixed u ∈ C∞(Ω).
Then, by Assumption 6.9 and Lemma 6.18 we have

|R(u; v1)−R(u; v2)| =
∫

Ω

‖(Q(x, v1)∇u‖q − ‖Q(x, v2))∇u‖q dL

≤ Cl‖v1 − v2‖L1 TV(u).

(6.78)

Now, let u ∈ U be arbitrary. Applying Lemma 6.17, we can find ũ ∈ C∞(Ω) such
that for any ε > 0

|R(u; vi)−R(ũ; vi)| ≤ ε for i = 1, 2, |TV(u)− TV(ũ)| ≤ ε. (6.79)

Then,

|R(u; v1)−R(u; v2)|
(6.79)

≤ |R(ũ; v1)−R(ũ; v2)|+ 2ε
(6.78)

≤ Cl‖v1 − v2‖L1 TV(ũ) + 2ε

(6.79)

≤ Cl‖v1 − v2‖L1(TV(u) + ε) + 2ε
u∈U
≤ Cl‖v1 − v2‖L1(Rmax + ε) + 2ε.

Since we can find ũ such that ε becomes arbitrary small, (6.77) follows for fixed u.
Since the right hand side of (6.77) is not depending on u, we achieve an uniform
convergence of R(·; vk) → R(·; v) on U for vk → v in L1(Ω). Since R(u; v) and
F(u; v) differ only by the term S(u) not depending on v, the uniform convergence
F(·; vk)→ F(·, v) also follows.

Lemma 6.20. For vk → v0 in L1(Ω) and uk := T(vk) := argminuF(u; vk):
lim inf
k→∞

F(uk; v0) ≤ lim sup
k→∞

F(uk; vk). (6.80)

Proof. For the sequence uk := T(vk), let lim infk→∞F(uk; v0) := c. For any ε > 0
Lemma 6.19 guarantees the existence of a K > 0 such that

|F(u; vk)−F(u; v0)| ≤ ε

2
∀u ∈ U, ∀k ≥ K. (6.81)

Moreover, we can find a k′ ≥ K such that

|F(uk′ ; v0)− c| ≤ ε

2
. (6.82)

Using (6.81) and (6.82), it follows that

|F(uk′ ; vk
′

)− c| ≤ |F(uk′ ; vk
′

)−F(uk′ ; v0)|+ |F(uk′ ; v0)− c| ≤ ε. (6.83)

In other words, there exists a sequence k′ →∞, such that F(uk′ ; vk
′

)→ c and thus

lim inf
k→∞

F(uk; v0) = c ≤ lim sup
k→∞

F(uk; vk). (6.84)
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Proof of Proposition 6.13. Let B be a weakly closed subset of U (recall that im(T) ⊆
U). Let (vk)k be a sequence in T−1(B) ⊆ V weakly converging in L2(Ω) to some

v0 ∈ V , i.e. there exists a sequence (uk)k ∈ U such that uk = T(vk), and vk
L2

⇀ v0.
Let u0 := T(v0). Since U is weakly ∗ pre-compact in BV (Ω) and weakly pre-compact

in L2(Ω), there exists a subsequence also denoted by (uk)k, such that uk ∗
⇀ u for

some u ∈ BV (Ω) and uk L2

⇀ u. Since B is weakly closed in L2(Ω), we find u ∈ B.
Next, we show that u = u0, i.e. u is the unique minimizer of F(·; v0). Since the
embedding from L2(Ω) to L1(Ω) is compact (cf. [4, Theorem 8.9]), we can find a
subsequence (vk

′

)k′ , of (v
k)k, which converges to v0 strongly in L1(Ω). Using the

weakly lower semi-continuity of F(·; v0) (cf. Remark 6.8) together with Lemma 6.20,
we find

0 ≤ F(u; v0)−F(u0; v0)≤ lim inf
k′→∞

F(uk′ ; v0)−F(u0; v0)

≤ lim sup
k′→∞

F(uk′ ; vk
′

)−F(u0; v0).
(6.85)

Recall that uk′ is the minimizer of F(·; vk′) for all k′ ≥ 0, which induces

F(uk′ ; vk
′

) ≤ F(u0; vk
′

). (6.86)

Inserting (6.86) into (6.85), we obtain

0 ≤ F(u; v0)−F(u0; v0) ≤ lim sup
k′→∞

F(u0; vk
′

)−F(u0; v0). (6.87)

Lemma 6.19 guarantees that the right hand side of (6.87) tends to zero, thus
F(u; v0) = F(u0; v0). On the other hand, u0 by definition is the unique minimizer
of F(·; v0), from which u = u0 follows. Since u ∈ B and u = u0 = T(v0), we have
shown that v0 ∈ T−1(B) and thus T−1(B) is weakly closed.

Proof of Theorem 6.11. The claim follows from Theorem 6.14, since K by definition
is convex and closed in L2(Ω) and v → T(v) is weakly compact in L2(Ω) (it maps
to the pre-compact set U , thus T(B) is pre-compact for any B ⊆ K) and weakly
upper semi-continuous in L2(Ω) (Proposition 6.13).

6.4 Theory for QVIs

6.4.1 Problem Statement

In Section 6.2 we have introduced the QVI problem

Find p∗ ∈ D̃(p∗) such that

〈∇G(p∗), p− p∗〉 ≥ 0 ∀p ∈ D̃(p∗),
⇔ 〈M⊤(M p∗ − f), p− p∗〉 ≥ 0 ∀p ∈ D̃(p∗),

(6.88)

QVIs and their solutions are well studied in the literature (see e.g. [12, 20, 37,
127]) and various results on theory and existence are available. For the problem
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(6.88), it turns out that the existence of a solution p∗ follows from standard theory.
Uniqueness results, however are only available for strongly monotone operators ∇G.
In our case, where ∇G(p) = M⊤(M p−f) and M = A−1 L, the non-trivial null space
of L induces a non-trivial null space of M, so that M⊤ M is not strictly monotone.
As a remedy, a change of variables can be introduced. Let v := M p and C(v) :=
MD(A−1(f − v)), where the operation of M is applied element-wise on the set D
(recall that the sets D and D̃ are linked via D̃(p) = D(A−1(f −M p))). Then, we
can rewrite (6.88) as the QVI problem

Find v∗ ∈ C(v∗) such that

〈v∗ − f, v − v∗〉 ≥ 0 ∀v ∈ C(v∗). (6.89)

(If v 7→ C(v) was constant, this would be just the VI corresponding to the pro-
jection problem minv∈C ‖f − v‖22.) Obviously, the mapping v 7→ v − f is strictly
monotone. Uniqueness of v the follows e.g. from Theorem 3.1. in [122], provided
that the mapping

v 7→ ΠC(v)w (6.90)

is a contraction for every w.
There is one issue with this reformulation. Calculating the projection ΠC(v)w onto

the set C(v) is equivalent to solving the original optimization problem with A = Id
and thus in general can not be done analytically. Moreover, proving the contraction
property of v 7→ ΠC(v)w is difficult. From a theoretical as well as numerical point
of view it is easier to work with the pair of variables (p, v) with v = M p, the set
D̂(v) := D̂(A−1(f − v)) and the mapping v 7→ ΠD̂(v)q. For this setup, we will show

1. Existence of a solution p∗ of (6.88) (cf. Section 6.4.2),

2. Uniqueness of v∗ := M p∗ (cf. Section 6.4.3).

We remark that uniqueness of p∗ cannot be shown in general, since the part of p∗

lying in the null space of M might be ambiguous, as can be seen in the following
example:

Example 6.21. We consider the discrete one-dimensional case, where u, p ∈ Rn.
As already discussed in Example 6.2, we like to discretize the gradient operator by
right-sided finite differences with Neumann boundary conditions. In order to assert
that the discrete divergence operator L is the negative adjoint to the discrete gradient,
we have to set

(Lp)i =





p1 if i = 1,

pi − pi−1 if i ∈ {2, . . . , n− 1},
−pn−1 if i = n.

(6.91)

(i.e. we use left-sided finite differences and a Dirichlet boundary condition). It can
be easily checked that with this definition −L⊤ is an approximation of the gradient
with right-sided differences and homogeneous Neumann boundary conditions.
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We observe that the null space N (M) = N (A−1 L) is spanned by the vector
en := (0, . . . , 0, 1)⊤. Now, let v ∈ MD(u0) be fixed and p ∈ D(u0) such that v = M p.
Recall that D(u0) = Dloc

1 × · · · × Dloc
n (u0). Assuming that the local constraint sets

Dloc
n is not a point set (cf. Assumption 4.10 (iv)), the entry pn ∈ Dloc

n is ambiguous,
i.e. v = M(p+ ten) holds for fixed pn and all t such that pn + ten ∈ Dloc

n (u0).
In higher dimensions N (M) ∩ D(p) is also not a point set, since it contains

N (M) ∩ BCmin
(0). ⋄

Finally, we point out that the constraint sets D(u), D̃(p) and D̂(v) are identical
as long as u, v and p are related to each other, i.e. v = M p and u = A−1(f −M p).
In order to simplify the notation, we will in the following use the notation D(u),
D(p) and D(v), respectively, whenever the parametrization of D is clear from the
context.

We slightly generalize the QVIP discussed above to allow a larger family of data
terms. To this end, we assume an arbitrary quadratic convex function G, which
depends on M p only, i.e. G(p) = G̃(M p), where G̃(·) is convex and quadratic. Please
note that p 7→ G̃(M p) is not strictly convex due to the null space of M. To simplify
the notation, we use G instead of G̃ from now on. The gradient of G(M p), which
appears in the QVIP, then takes the form ∇G(M p) = M⊤ g(M p) for some affine g.
In addition to the assumption on G, we assume that the constraint set D depends
on M p. With these generalization, the QVIP becomes

Find p∗ ∈ D(M p∗) such that

〈∇G(M p∗), p− p∗〉 ≥ 0 ∀p ∈ D(M p∗)

⇔ 〈M⊤ g(M p∗), p− p∗〉 ≥ 0 ∀p ∈ D(M p∗).

(6.92)

Concerning the primal solution u∗ we assume that it can be retrieved from M p∗.
We retrieve the previous QVIP (6.88) with g(v) = v − f .

6.4.2 Existence

In this section we discuss existence results for the QVIP (6.92) with arbitrary con-
tinuous ∇G(p). We utilize existence theory from [100].

First, we state necessary assumptions required for the existence of a solution.
These assumptions will also be required for uniqueness results provided in Sec-
tion 6.4.3.

Assumption 6.22 (for existence). Assume that

D : p ⇒ D(M p) := {p ∈ Rmn :pi ∈ Dloc
i (M p) ⊆ Rmn, i = 1, . . . , n

}
, (6.93)

where we use the symbol ⇒ to denote a set-valued mapping. Each Dloc
i : Rmn ⇒

Rmn, i = 1, . . . , n in (6.93) has the following properties:

(i) For fixed p the set Dloc
i (M p) is a closed convex subset of Rmn.

89



CHAPTER 6. QVIS FOR REGULARIZATION

(ii) There exists Cmax > 0, such that for all i, p: Dloc
i (M p) ⊆ BCmax

(0) (closed ball
with radius Cmax).

(iii) There exists Cmin > 0, such that for every p and every i we have BCmin
(0) ⊆

Dloc
i (M p). In particular, Dloc

i (M p) is non-empty.

(iv) The projection ΠDloc
i (M p)(q) of q onto Dloc

i (M p) for a fixed q is continuous with
respect to p.

(Please note that items (i) to (iii) are also required for existence for the TV-based
data-driven adaptive regularization, cf. Assumption 4.10.)

Remark 6.23. Please note that, since the Dloc
i are closed and convex, the projection

ΠDloc
i (v) onto each Dloc

i (v) is well defined. With the same argument ΠD(v) is well-
defined. Moreover, the projection ΠD(v) can be expressed by the projections ΠDloc

i (v).
Thus Assumption 6.22(iv) together with the linearity of M provides the continuity
of p 7→ ΠD(M p).

Proposition 6.24. Let p 7→ G(M p) continuously differentiable. Moreover, let
D(M p) be defined as in (6.93), such that Dloc

i (M p), i = 1, . . . , n satisfy Assump-
tion 6.22. Then the QVI problem (6.92) has a solution.

Proof. Since the mapping p 7→ F (p) := ΠD(M p)(p − ∇G(M p)) ∈ (BCmax
(0))n is

well-defined and continuous, Brouwer’s fixed point theorem provides that a fixed
point of F exists. Theorem. 5.1. in [37] shows that this fixed point solves the QVIP
(6.92).

We will see that for uniqueness results a higher regularity of p 7→ ΠD(M p)(q),
namely Lipschitz-continuity is required.

Remark 6.25 (A-priori bounds). From Assumption 6.22 (ii) we derive an a-priori
bound for D(M p) independent from p:

D(M p) ⊆ (BCmax
(0))n ⊆ B√

nCmax
(0) ∀p ∈ Rmn. (6.94)

We define R :=
√
nCmax. In particular, (6.94) provides a bound for a solution p∗ of

(6.92):
p∗ ∈ D(M p∗) ⊆ BR(0), i.e. ‖p∗‖2 ≤ R =

√
nCmax. (6.95)

6.4.3 Uniqueness

Now we provide uniqueness results for v∗ := M p∗, where p∗ is a solution to the
QVIP (6.92). Recall that for these results we required that ∇G(p) has the specific
form

∇G(M p) = M⊤ g(M p) (6.96)

with some function g : Rn → Rn.
We prove uniqueness of v∗ under the following assumption:
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Assumption 6.26 (for uniqueness).

(i) g(v) is Lipschitz-continuous with Lipschitz-constant µ.

(ii) g(v) is strongly monotone with constant ν: For all v1, v2 ∈ Rn we have

〈g(v1)− g(v2), v1 − v2〉 ≥ ν‖v1 − v2‖22. (6.97)

(iii) The set D(p) depends only on v = M p. We consider the variation rate η
of v 7→ D(v), i.e. the smallest number, such that for all v, v′ ∈ Rn and q ∈
(BCmax

(0))n

‖ΠD(v)q − ΠD(v′)q‖2 ≤ η‖v − v′‖2, ∀q ∈ BR(0). (6.98)

We assume that η <∞.

(iv) The variation rate η is less than 1
‖M‖2

ν
µ
.

Remark 6.27.

1. When considering the QVIP (6.88), we have g(v) = v−f and thus µ = ν = 1.

2. ‖M‖2 is the operator norm of M and thus ‖M‖2 =
√
λmax, where λmax is the

largest eigenvalue of M⊤ M.

Before showing uniqueness, let us first define the set-valued operator T̂(v) map-
ping from Rn to BR(0) as follows: Let p ∈ T̂(v) if and only if p ∈ D(v) and it solves
the VI

〈∇G(M p), p− p〉 ≥ 0 ∀p ∈ D(v). (6.99)

We remark that due to our assumptions of G being quadratic and convex and g
being strongly monotone, G(v) is actually strictly convex. It follows that operator
M ◦ T̂(v) = Margminṽ∈MD(v) G(ṽ) (where MD(v) := {q | ∃p ∈ D(v) with q = M p})
is single-valued.

We find that for any solution p∗ to QVIP (6.92) v∗ = M p∗ is a fixed point of
M ◦ T̂.

Theorem 6.28 (Uniqueness).

1. Under Assumptions 6.22 and 6.26 (i)-(iii), the mapping M ◦ T̂ is Lipschitz-
continuous with constant γ := η‖M‖2 µν .

2. Let p∗ be a solution of the QVI (6.92) (cf. Proposition 6.24). If in addition to
the assumptions above, Assumption 6.26 (iv) holds, then v∗ := M p∗ is unique.

Please note that Theorem 6.28 is a generalization of our theory in [103].

91



CHAPTER 6. QVIS FOR REGULARIZATION

Proof. The proof follows the proof of Theorem 6 in the paper by Nesterov & Scrimali
[122], but uses the specific form of ∇G(p) = M⊤ g(M p). In particular, we do not
require ∇G to be a strongly monotone operator as in [122].

Claim 1: We fix two different points v1, v2 ∈ im(M). Let Di := D(vi), pi ∈ T̂(vi)
and Gi = ∇G(M pi). If M(p1 − p2) = 0, we immediately find

‖MT̂(v1)−MT̂(v2)‖2 = ‖M p1 −M p2‖2 = 0 < c‖v1 − v2‖2 (6.100)

for any c ≥ 0.
Let us now assume M(p1 − p2) 6= 0. Since pi, i = 1, 2 solve

argmin
p∈D(vi)

G(M p), (6.101)

the VI

〈∇G(M pi), q − pi〉 = 〈Gi, q − pi〉 ≥ 0 ∀q ∈ Di (6.102)

holds, and, for arbitrary large τ ≥ 0,

pi = ΠDi
(pi − τGi). (6.103)

For q := ΠD2(p1 − τG1), we find from (6.103) and the condition on the variation
rate (6.98) that

‖p1 − q‖2 = ‖ΠD1(p1 − τG1)− ΠD2(p1 − τG1)‖2 ≤ η‖v1 − v2‖2. (6.104)

On the other hand, q minimizes the distance to p1 − τG1 within D2:

q = argmin
p∈D2

1

2
‖p− p1 + τG1‖2. (6.105)

Since p2 ∈ D2, it follows from the VI corresponding to (6.105) that

〈q − (p1 − τG1), p2 − q〉 ≥ 0. (6.106)

From (6.102) and (6.106) it follows that

〈q − p1, p2 − q〉 ≥ τ〈G1, q − p2〉
= τ〈G1, q − p1〉+ τ〈G2, p1 − q〉+ τ〈G2, q − p2〉︸ ︷︷ ︸

≥0

+τ〈G1 −G2, p1 − p2〉

≥ τ〈G1 −G2, q − p1〉+ τ〈G1 −G2, p1 − p2〉.
(6.107)

Now we use the specific form assumed on ∇G(pi), cf. (6.96):

Gi = M⊤ g(M pi) =: M⊤ gi, (6.108)
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and, using the strong monotonicity of g, further bound

τ〈G1 −G2, q − p1〉+ τ〈G1 −G2, p1 − p2〉
= τ〈M⊤(g1 − g2), q − p1〉+ τ〈M⊤(g1 − g2), p1 − p2〉
= τ〈M⊤(g1 − g2), q − p1〉+ τ〈g(M p1)− g(M p2),M p1 −M p2〉
≥ τ〈M⊤(g1 − g2), q − p1〉+ τν‖M p1 −M p2‖22.

(6.109)

Combining (6.107) and (6.109), rearranging the terms and using the Lipschitz-
continuity of g we find

τν‖M p1 −M p2‖22 ≤ 〈q − p1, p2 − q〉+ τ〈M⊤(g1 − g2), p1 − q〉
= 〈q − p1, p2 − q〉+ τ〈g(M p1)− g(M p2),M p1 −M q〉
≤ ‖q − p1‖2 · ‖q − p2‖2 + τµ‖M p1 −M p2‖2 · ‖M p1 −M q‖2.

(6.110)

Next, we divide both sides of (6.110) by τν‖M p1 −M p2‖2 > 0 and derive

‖M p1 −M p2‖2 ≤
‖q − p1‖2 · ‖q − p2‖2
τν‖M p1 −M p2‖2

+
µ

ν
‖M p1 −M q‖2. (6.111)

Since τ can be chosen arbitrarily large, we find

‖M p1 −M p2‖2 ≤
µ

ν
‖M p1 −M q‖2. (6.112)

Please observe that by (6.104) we have

‖M p1 −M q‖2 ≤ ‖M‖2‖p1 − q‖2 ≤ ‖M‖2η‖v1 − v2‖2. (6.113)

Combining (6.112) and (6.113), we find

‖MT̂(v1)−MT̂(v2)‖2 = ‖M p1 −M p2‖2 ≤ ‖M‖2η
µ

ν
‖v1 − v2‖2. (6.114)

This proves claim 1.

Claim 2: Let v1 6= v2 be two fixed points of T̂. Since with Assumption 6.26 (iv)
‖M‖2η µ

ν
< 1, we obtain from (6.114)

‖v1 − v2‖2 = ‖MT̂(v1)−MT̂(v2)‖2 < ‖v1 − v2‖2, (6.115)

which is a contradiction.

We remark that alternatively to the Lipschitz-constant γ of M T̂ one often con-
siders the contraction gap defined as

δ := 1− γ = 1− µ

ν
‖M‖2η, (6.116)

which has to be positive to guarantee uniqueness.
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Remark 6.29. We revisit QVIP (6.88), where G(p) = 1
2
‖M p − f‖2 and thus

g(v) = v − f and µ = ν = 1. On this special case we remark:

• An alternative condition to Assumption 6.26 (iv) to guarantee uniqueness is
that the Lipschitz-constant of v 7→ M ◦ΠD(v)(q) is less than 1 for all q ∈ BR(0).
Note that this mapping is different to v 7→ ΠMD(v)(q) (cf. Section 6.4.1).

• We recall that we are actually interested in the primal variable u := A−1(f −
M p) (which in our applications is the restored image). It follows from Theo-
rem 6.28 that this variable is unique under Assumptions 6.22 and 6.26.

To guarantee uniqueness of the fixed point problem for specific examples of
adaptive TV regularization, it remains to provide a sufficiently small variation rate.
The variation rate, on the other hand, typically is related to the regularization
strength, as we illustrate by revisiting Example 6.2:

Example 6.30. For the weighted TV regularization in Example 6.2 we considered
the constraint set D(p) determined by the local constraint sets Dloc

i given as

Dloc
i = Bαi

(0), αi := max{α0(1− κ(|(L⊤u)i|), ε}. (6.117)

Due to the relation u = A−1(f − v) (recall that v = M p) each αi depends on v by

αi(v) = max
{
α0(1− κ(|(L⊤ A−1(f − v))i|), ε

}
(6.118)

= max
{
α0(1− κ(|(M⊤(f − v))i|), ε

}
, (6.119)

where we used M = A−⊤ L. We calculate the variation rate η of D(v). Let v, ṽ ∈
Rn, q ∈ Rmn be arbitrary. Since the projection of q onto D(v) is a scaling of the n
components qi ∈ Rm to at most length αi(v), we find

‖ΠD(v)q − ΠD(ṽ)q‖22 ≤
n∑

i=1

|αi(v)− αi(ṽ)|2 (6.120)

≤ α2
0κ

2

n∑

i=1

∣∣|(M⊤(f − v))i| − |(M⊤(f − ṽ))i|
∣∣2 (6.121)

≤ α2
0κ

2

n∑

i=1

|(M⊤(f − v)−M⊤(f − ṽ))i|2 (6.122)

= α2
0κ

2‖M⊤(v − ṽ)‖22 (6.123)

≤ α2
0κ

2‖M ‖22 ‖v − ṽ‖22. (6.124)

Thus η = α0κ‖M‖2.
Considering a data term of the form S(u) = 1

2
‖Au − f‖22 with invertible A :

Rn → Rn, we retrieve a dual formulation with G(p) = 1
2
‖f −M p‖2 and M = A−1 L.

Since then µ = ν = 1, Theorem 6.28 guarantees a unique solution if

α0κ‖M‖22 < 1. (6.125)
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For the task of denoising in 2D (Ω ⊂ R2), where A = Id, M = L and ‖M‖22 =
‖L‖22 = 8 (assuming an equi-distant grid with grid size 1), condition (6.125) becomes
α0κ < 1

8
. Given a fixed maximal regularization strength α0 we thus can determine

feasible values for κ to guarantee uniqueness of the solution.
For the task of deblurring, where M = A−⊤ L, we expect that in practical ap-

plications ‖M‖2 = ‖A−⊤ L‖22 ≫ 1 due to small eigenvalues of A and thus that
uniqueness can be guaranteed only for very small α0 (weak smoothing) or small κ
(weak adaptivity). ⋄

6.4.4 An Analytic Example

We revisit Example 6.30 and focus on the task of denoising in the one-dimensional
setting. Recall that in this example the objective function is given as

F(u; v) :=
n∑

i=1

(
1

2
(ui − fi)

2 + αi(v)‖(L⊤u)i‖2
)
, (6.126)

with α(v) ∈ Rn for fixed v ∈ Rn defined as

αi(v) := max(α0(1− κ|vi+1 − vi|), ε) i < n,

αn(v) := 0.
(6.127)

Recall that we are searching for a fixed point of

u0 7→ argmin
u
F(u, u0). (6.128)

We consider data f to be given as follows: We assume n = 3N for some N > 0,
such that the grid nodes can be divided into three disjoint sets I1 := {1, . . . , N},
I2 := {N + 1, . . . , 2N} and I3 := {2N + 1, . . . , 3N}. Now let

fi =

{
0 if i ∈ I1 ∪ I3,

1 if i ∈ I2.
(6.129)

It can be shown that any solution of the inner problem asserts ui ∈ [0, 1] and takes
the form u(a, b) := (u1(a, b), . . . , un(a, b))

⊤ with

ui(a, b) :=

{
a if i ∈ I1 ∪ I3,

b if i ∈ I2,
(6.130)

for some 0 ≤ a ≤ b ≤ 1. Below we find a fixed point u∗ of (6.128) of this form,
i.e. u∗ = u(a∗, b∗) for some 0 ≤ a∗ ≤ b∗ ≤ 1. Assuming form (6.130) on u and
analogously on u0, the objective function in (6.126) simplifies to

F(u(a, b); u0(a0, b0)) = Na2 +
N

2
(b− 1)2 + 2α̃(a0, b0)(b− a), (6.131)

where
α̃(a0, b0) := max{α0(1− κ(b0 − a0)), ε}. (6.132)
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Lemma 6.31. Let κ ≤ 1− ε
α0
. Then, a fixed point u∗ of u0 7→ argminuF(u; u0) of

the form u∗ = u∗(a∗, b∗), (cf. (6.130)) is given by:

a∗ :=

{
1
3

if α0 ≥ N
3
,

α̃
N

else,
b∗ :=

{
1
3

if α0 ≥ N
3
,

1− 2α̃
N

else,
(6.133)

where α̃ = α̃(a∗, b∗) = α0N
1−κ

N−3α0κ
.

Proof. Let X = {(a, b) | 0 ≤ a ≤ b ≤ 1}. We calculate a fixed point of (a0, b0) 7→
argmin(a,b)∈X F(a, b; a0, b0), where

F(a, b; a0, b0) := Na2 +
N

2
(b− 1)2 + 2α̃(a0, b0)(b− a) (6.134)

and
α̃(a0, b0) = max{α0(1− κ(b0 − a0)|), ε}. (6.135)

With the assumption that κ ≤ 1− ε
α0
, since 0 ≤ b0 − a0 ≤ 1, (6.135) simplifies to

α̃(a0, b0) = α0(1− κ(b0 − a0)). (6.136)

For a fixed α̃(a0, b0), we find

∂F(a, b)
∂a

= 2Na− 2α̃(a0, b0), (6.137)

∂F(a, b)
∂b

= N(b− 1) + 2α̃(a0, b0). (6.138)

From ∇F(ā, b̄) = 0 for optimal ā, b̄ it follows

ā =
α̃(a0, b0)

N
, b̄ = 1− 2α̃(a0, b0)

N
. (6.139)

These values ā, b̄ define an admissible ū(ā, b̄) only if b̄ ≥ ā. This condition is satisfied
if α̃(a0, b0) ≤ N

3
. If α̃(a0, b0) ≥ N

3
(including equality), we obtain a ’constant’ mini-

mizer of (6.126), i.e. ūi = (1
3
, . . . , 1

3
)⊤, from which α̃(ū) = α0 follows. Consequently,

we have that u∗ = (1
3
, . . . , 1

3
)⊤ is a fixed point if α0 ≥ N

3
.

Let us now assume that α0 < N
3
. For a fixed point, we require (ā, b̄) = (a0, b0).

Using this inequality and inserting (6.139) into (6.136), we derive

α̃(ā, b̄) = α0(1− κ(1− 3α̃(a0, b0)

N
)). (6.140)

Thus, with (a∗, b∗) := (ā, b̄) = (a0, b0) we have

α̃(a∗, b∗) = α0

(
1− κ

(
1− 3α̃(a∗, b∗)

N

))
(6.141)

⇔
α̃(a∗, b∗) = α0 N

1− κ

N − 3α0κ
. (6.142)

Please note that (6.142) is well defined with α̃ > 0, since we assumed κ ≤ 1− ε
α0

< 1

and α0 ≤ N
3
.
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We remark that in the case α0 ≥ N
3
, depending on the choice of κ, there exist

other fixed points than the one provided above. In the case that

α0 <
N
3
and κ ≤ 1− ε

α0
, (6.143)

it follows from the proof that the fixed point is unique. Then

α0κ ≤ α0 − ε ≤ N

3
− ε. (6.144)

Let us know check uniqueness by means of the theory presented in Section 6.4.
Theorem 6.28 provides uniqueness under the assumption that

κα0‖M ‖22 = κα0‖L‖22 < 1 (6.145)

(cf. Example 6.30). Since in the one-dimensional case four is a tight upper bound
for ‖L‖2, we find in our particular example that

κα0 ≤
1

4
(6.146)

guarantees uniqueness. As one would expect, condition (6.146) is stronger than the
condition (6.143), as it covers a larger class of fixed point problems.

6.5 Data Terms for Image Restoration

When we proposed our ansatz for solution-driven adaptivity in Section 6.1 (in the
continuous setting) we assumed the strict convexity of the inner problem. This
assumption is required to assert well-definedness of the dependence of D on u.

In the derivation of the QVIP (6.88) we made the assumption that A : Rn → Rn

is invertible, which besides allowing the equivalent formulation as QVIP guarantees
the strict convexity of the inner problem.

Let us discuss this issue in view of the applications of image denoising, image
deblurring and image inpainting:

Denoising: Since we use A ≡ Id, the inner problem is strictly convex.

Deblurring: In the continuous setting, the operator A given by the convolution by
some kernel might not be injective, so that the inner problem is not strictly-
convex. In the discrete setting, depending on the discretization, the resulting
matrix might be invertible.

Inpainting: The operator A : L2(Ω) → L2(Ωf ), (Au)(x) = u(x) for x ∈ Ωf is not
injective, thus the inner problem is not strictly convex.

For the tasks of deblurring and inpainting, we suggest three alternative modifi-
cations to circumvent the problem of non-strict convexity:
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1. We augment operator A with ε Id for some small ε > 0.

2. We consider the sum of two convex data terms S1(u) and S2(u), one of which
is strictly convex.

3. For the task of inpainting, we can think of a third alternative, namely to use
the operator

S(u) = 1

2
‖w‖2L2(Ω) with w(x) =

{
u(x)− f(x) if x ∈ Ωf ,

ε(u(x)− u0(x)) else ,
(6.147)

for a small ε > 0 and some arbitrary function u0 ∈ L2(Ω) .

On the second alternative we remark the following. We consider the discrete setting
and the QVIP resulting from the proposed data term of the form

S(u) = S1(u) + S2(u) (6.148)

with Si(u) = ai
2
‖Ai u − fi‖22 for some ai > 0 and arbitrary fi, i = 1, 2. Then, the

optimality condition for u minimizing S1(u) + S2(u) + 〈Lp, u〉 for fixed p ∈ D reads

a1 A
⊤
1 (A1 u− f1) + a2 A

⊤
2 (A2 u− f2) + Lp = 0

⇔ (a1 A
⊤
1 A+a2 A

⊤
2 A2)u = a1 A1 f1 + a2 A2 f2 − Lp.

(6.149)

Assuming that one operator is positive semi-definite and the other is positive definite,
(a1 A

⊤
1 A1 +a2 A

⊤
2 A2) is invertible and we have

u = (a1 A
⊤
1 A1 +a2 A

⊤
2 A2)

−1(A1 f1 +A2 f2 − Lp). (6.150)

Thus, following the derivation in Section 6.2 we obtain a QVIP, where ∇G depends
on M p := (a1 A

⊤
1 A1 +a2 A

⊤
2 A2)

−1Lp. Moreover, the primal variable u depends on
M p. We therefore can apply our theory from Section 6.4.
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Chapter 7

Numerics

The aim of this section is to discuss numerical algorithms for the solution of convex,
non-convex and quasi-variational inequality problems (QVIPs). We will start with
algorithms for convex minimization and recall standard methods from the literature,
in particular primal-dual algorithms [36] and FISTA [15]. For the solution of QVIPs
we will revisit an approach we have proposed in [103]. This approach consists of an
outer iteration, in which a sequence of convex minimization problems is solved. For
these convex problems, we will utilize the standard algorithms mentioned above.
Different to standard approaches for QVIPs, our approach is able to cope with
non-strictly monotone operators in the QVIPs.

Finally, we will describe a Newton-like algorithm for solving non-convex opti-
mization problems on manifolds, which we have proposed in [16, 17].

7.1 Algorithms for Convex Problems

In this section we recall numerical algorithms from the literature to solve convex
optimization problems of the form

min
u∈Rn
F1(u) + F2(u), where

F1(u) :=
1
2
‖Au− f‖22,

F2(u) := sup
p∈D
〈Lp, u〉,

(7.1)

with some linear operators A : Rn → Rn and L : Rn → Rm and a compact convex
set D ⊂ Rm. Please note that in (7.1) we have set X = Rn for the space to minimize
over, which means that we assume that the problem under consideration is already
discretized.

In the following, we recall two state-of-the-art algorithms for solving (7.1), for
which a-posterior error bounds on the numerical solution are available.
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7.1.1 Primal-Dual

An extensive study of algorithms for solving (7.1) can be found in the paper by
Chambolle and Pock [36]. Starting with a basic algorithm, they present several
accelerated variants exploiting higher regularity of Fi, i = 1, 2.

Here, we focus on Algorithm 2 from [36], which is suited best under the assump-
tion that A is invertible. We adopt this algorithm to the special form of F(u) in
(7.1):

Algorithm 2: A primal-dual algorithm for minimizing functionals of the form
(7.1).

Input: N ≥ 1, data f , initial guess u(0) ∈ Rn, p(0) ∈ Rm,
Output: u = u(N)

Let ũ(0) = u(0) and τ (0), σ(0) > 0 such that τ (0)σ(0)‖L‖22 ≤ 1.
begin

for k = 1, . . . , N do
p(k) := ΠD(p(k−1) + σ(k − 1)L⊤ũ(k−1)) // update dual variable

u(k) := (Id+τ (k−1)∂F1)
−1(u(k−1) − τ (k−1)Lp(k)) // update primal

variable

θ(k) := 1√
1+2τ (k−1)

τ (k) := τ (k−1)θ(k)

σ(k) := σ(k−1)

θ(k)

ũ(k) := u(k) + θ(k)(u(k) − u(k−1)) // extrapolation step

Please note that (Id+τ∂F)−1 in Algorithm 2 is the resolvent or proximity operator
defined as

(Id+τ∂F)−1(u0) := argmin
u

1

2τ
‖u− u0‖22 + F(u). (7.2)

In the case A = Id we have (Id+τ∂F1)
−1(u0) = 1

1+τ
(u0 + τf). In the case of

A 6= Id we refer to [36, Section 6] for a discussion on efficient implementations of
the resolvent operator. Convex constraints on u can be incorporated into F1 using
the indicator function ιK.

The following error estimate holds for Algorithm 2 (cf. [36, Theorem 2]):

Theorem 7.1. Le (u(k), p(k))k be the sequence generated by Algorithm 2 with the
choice τ0 := τ (0) > 0 and σ(0) = 1

τ (0)‖L‖22
. Then, for any ε > 0 there exists N0

depending on τ0 and ε, such that for any N ≥ N0

‖u(N) − u‖22 ≤
1 + ε

N2

(‖u(0) − u‖2
τ 20

+ ‖L‖2‖p(0) − p‖22
)
, (7.3)

where u is the exact solution to (7.1) and p := argmaxp∈D〈Lp, u〉.
Proof: see [36].
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7.1.2 FISTA

The Fast Iterative Shrinking and Thresholding Algorithm (FISTA) was proposed by
Beck and Teboulle in [15]. FISTA can be applied in the situation where at least one
of the functionals Fi(u), i = 1, 2 is differentiable with Lipschitz-continuous gradient.

Here, we consider applying FISTA to the dual problem of (7.1), which under the
assumption that A is invertible can be reformulated as

min
p∈D
G(p) := min

p∈D

1

2
‖M p− f‖22 (7.4)

with M = A−⊤ L.

Given a solution p of the dual problem (7.4), the solution of the primal problem
then is retrieved via u := A−1(f −M p).

By means of the indicator function ιD (cf. (3.3)) of set D problem (7.4) can be
re-written as

min
p∈Rm

G1(p) + G2(p), (7.5)

where

G1(p) :=
1

2
‖M p− f‖22,

G2(p) := ιD(p).
(7.6)

We observe that ∇G1(p) is Lipschitz-continuous with constant λ := ‖M‖22.
The minimization procedure of FISTA makes use of an auxiliary strict convex

problem

min
u∈Rn

Λ

2
‖u− (v − 1

Λ
∇G1(v))‖22 + G2(u) (7.7)

for fixed v ∈ Rn and Λ > 0. We denote the unique minimizer of (7.7) by ρΛ(v).

The FISTA algorithm (with constant step size) is given as

Algorithm 3: FISTA.

Input: N ≥ 1, initial guess p(0) ∈ D ⊂ Rm, Lipschitz constant λ of ∇G1
Output: p = p(N).
Let τ (0) = 1, p̃(1) = p(0)

begin
for k = 1, . . . , N do

p(k) := ρλ(p̃
(k−1))

τ (k) := 1
2
(1 +

√
1 + 4(τ (k−1))2)

p̃(k) := p(k) + τ (k−1)−1
τ (k)

(p(k) − p(k−1))

We briefly recall the convergence results for Algorithm 3, cf. [15, Theorem 4.4]:
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Theorem 7.2. Let p be the solution of (7.4) and let (p(k))k be the sequences gener-
ated by Algorithm 3. Then for any k ≥ 1

G(p(k))− G(p) ≤ 2λ

(k + 1)2
‖p(0) − p‖22. (7.8)

From Theorem 7.2, we can also obtain an error bound on the numerical solution
of the primal problem F(u) ad follows:

Proposition 7.3 (Error bound). Let p(N) be the result of Algorithm 3 applied to
the dual problem (7.5). For M p(N) we have the following error estimate:

‖M p(N) −M p‖2 ≤
2‖M‖2
N + 1

‖p(0) − p‖2, (7.9)

Using the boundedness of D and defining R := max{‖p‖2 | p ∈ D}, it follows that

‖M p(N) −M p‖2 ≤
4‖M‖2R
N + 1

. (7.10)

Remark 7.4. Let us consider the primal variable u given as u = A−1(f −M p(N)).
Due to the estimate

‖u(N) − u‖2 ≤ ‖A−1 ‖2 ‖M p(N) −M p‖2 (7.11)

we obtain from (7.9) and (7.10) corresponding error bounds for u with an additional
factor ‖A−1 ‖2.

The proof of Proposition 7.3 requires the following additional lemma.

Lemma 7.5. Let D be a non-empty, closed and convex set and G(p) := 1
2
‖M p −

f‖22 + ιD(p). The minimizer p of the problem minp∈Rm G(p) satisfies

1

2
‖M p−M p‖22 ≤ G(p)− G(p), for every p ∈ D. (7.12)

Proof. The proof follows [56, Eqn. (20)-(25)]. We consider the decomposition
G(p) = G1(p) + G2(p) as in (7.5) and re-write G1(p) = H(M p), where H(v) :=
1
2
‖v − f‖22. Moreover, we define

I(p) := H(M p)−H(M p)− 〈M⊤(
∂

∂v
H(M p)), p− p〉, (7.13)

J(p) := G2(p)− G2(p) + 〈M⊤(
∂

∂v
H(M p)), p− p〉, (7.14)

where ∂
∂v
H is the gradient of H. Then, by definition,

I(p) + J(p) = G(p)− G(p). (7.15)
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Since H(v) is strongly convex with parameter 1, i.e. H(v)−H(v′)− 〈 ∂
∂v
H(v′), v −

v′〉 ≥ 1
2
‖v − v′‖22, we find

H(M p)−H(M p)− 〈 ∂
∂v

H(M p),M p−M p〉 ≥ 1

2
‖M p−M p‖22 (7.16)

⇔ H(M p)−H(M p)− 〈M⊤(
∂

∂v
H(M p)), p− p〉 ≥ 1

2
‖M p−M p‖22 (7.17)

⇔ I(p) ≥ 1

2
‖M p−M p‖22. (7.18)

Now, we show that J(p) ≥ 0. Since p is the minimizer of G, we have

0 ∈ ∂(H ◦M)(p) + ∂G2(p) (7.19)

⇔ −M⊤(
∂

∂v
H(M p)) ∈ ∂G2(p), (7.20)

where ∂H = {M⊤( ∂
∂v
H(M p))} and ∂G2 are the sub-differentials of H(v) and G2(p),

respectively. By definition of the sub-differential,

−M⊤(
d

dp
H(M p)) ∈ ∂G2(p) (7.21)

⇔ G2(p) ≥ G2(p) + 〈−M⊤(
∂

∂v
H(M p)), p− p〉, ∀p ∈ Rm (7.22)

⇔ J(p) ≥ 0, ∀p ∈ Rm. (7.23)

Inserting (7.18) and (7.23) into (7.15) shows the claim.

Proof of Proposition 7.3. By applying Theorem 7.2, we obtain

G(p(N))− G(p) ≤ 2‖M‖22
(N + 1)2

‖p(0) − p‖22. (7.24)

Combining (7.12) from Lemma 7.5 and (7.24) we find

‖M p(N) −M p‖22 ≤
4‖M‖22
(N + 1)2

‖p(0) − p‖22. (7.25)

Taking the square root on both sides of (7.25), we derive the first claim

‖M p(N) −M p‖2 ≤
2‖M‖2
(N + 1)

‖p(0) − p‖2. (7.26)

The inequality (7.10) follows from (7.26) using

‖p(0) − p‖2 ≤ ‖p(0)‖2 + ‖p‖2 ≤ 2R. (7.27)
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7.2 An Algorithm for Solving QVIP

In the following, we discuss an algorithm for solving QVIPs of the form

Find p∗ ∈ D(M p∗) such that

〈∇G(M p∗), p− p∗〉 ≥ 0 ∀p ∈ D(M p∗)

⇔ 〈M⊤ g(M p∗), p− p∗〉 ≥ 0 ∀p ∈ D(M p∗).

(7.28)

we have introduced in Section 6.4. We proposed this algorithm for the special case
g(v) = v − f originally in [103].

Before we describe the algorithm in detail, we require to recall some definitions
from Section 6.4. In in this section we have introduced the solution operator T̂(v)
to the variational equation

Find p∗ ∈ D(v) such that

〈M⊤ g(M p∗), p− p∗〉 ≥ 0 ∀p ∈ D(v),
(7.29)

i.e. any p∗ ∈ T̂(v) solves (7.29).
Throughout this section, we assume that Assumptions 6.22 and 6.26 from Sec-

tion 6.4 are satisfied. In particular, these assumption imply that the operator M ◦ T̂
is single-valued and a contraction. We denote the Lipschitz constant of M ◦ T̂ by γ.
Consequently, γ < 1.

7.2.1 Proposed Algorithm

In the following, we present an algorithm to solve the QVIP (7.28),
This algorithm consists of two nested iterations. In the outer loop we update the

value v, which defines the constraint set D(v). The inner step consists in solving the
inner problem, which thanks to its convex nature can be stated in three equivalent
forms (with fixed constraint set D(v)):

1. Sattle-point problem:

min
u∈Rn

max
p∈D(v)

S(u) + u⊤Lp, (7.30)

2. Dual Problem:
min

p∈D(v)
G(p), (7.31)

where G(p) is the Fenchel dual to F(u) = maxp∈D(v) S(u) + u⊤Lp.

3. Variational Inequality (VI):

find p ∈ D(v) such that (7.32)

〈∇G(p), p− p〉 ≥ 0, ∀p ∈ D(v).
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In the outer iteration, see Algorithm 4, we update variable v[k], which defines
the constraint set D(v[k]) and apply a numerical solver to the convex inner problem
(7.30) - (7.31). The outer iteration is fairly independent from the formulation of the
inner problem and the solver used, except that in order to guarantee convergence we
have assume some a-priori bounds on the error of the numerical solution of the inner
problem. We outline this error bound below. For the moment, we consider some
arbitrary numerical solver providing some papprox ≈ p, where p is the exact solution
of the inner problem. We denote this solver by sol(D, p0, N), where D is the fixed
constraint set, p0 is an initial value and N is the number of inner iteration steps.
(In order to distinguish outer iterates from inner iterates, we use squared brackets
when indexing the former, and parentheses when indexing the latter, i.e. p[k] versus
p(k) for variable dual p.)

Algorithm 4: Outer Iteration

Output: Sequence (p[k])k converging to a solution p∗ of (6.92).
Choose arbitrary p[0] ∈ BR(0) ⊂ Rmn. // initialization

begin
for k = 0, . . . , K − 1 do

v[k] = M p[k]

p[k+1] = sol(D(v[k]), p[k], N) // → solving inner problem

In Section 7.2.2 below we show that under sufficient conditions the sequence
(p[k])k produced by Algorithm 4 converges to a fixed point p∗ of (6.92). These
conditions include that Assumptions 6.22 and 6.26 are satisfied (which in particular
guarantees a unique p∗) and the following a-priori error bound on the solution of
each inner problem. Recall that the operator which maps v to an exact solution p
of (7.30) - (7.31) is denoted by T̂(v). We assume that for any ε > 0 we can find N
large enough and independent of p0 ∈ BR(0) and D, such that the inner problem in
terms of v = M p can be solved up to an error less than ε:

‖M
(
sol(D(v0), p0, N)−MT̂(v)

)
‖2 ≤ ε, ∀p0 ∈ BR(0), v0 ∈ Rmn, (7.33)

where R is the a-priori bound on p (cf. Remark 6.25).
Numerical methods for solving (7.30)-(7.31) with the required error bound have

been discussed in Section 7.1.

7.2.2 Convergence

In the following, we show convergence of Algorithm 4 and provide convergence rates
for a special case.
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Proposition 7.6 (Convergence). Let M ◦ T̂ be a contraction (with Lipschitz con-
stant γ < 1). For fix ε > 0, we assume that the number of iterations of the solver
for the inner problem (7.30)–(7.31) is chosen large enough to guarantee

‖M sol(D(v), p, N)−MT̂(v)‖2 ≤ ε (7.34)

(independent of p ∈ BR(0) and v).
Then, the following holds:

(i) for the sequence v[k] resulting from Algorithm 4 we have

‖v[k] − v∗‖2 ≤ ε
1

1− γ
+ γk‖v0 − v∗‖2, (7.35)

where v∗ is the unique fixed point of M ◦ T̂.

(ii) {v[k]}k converges to the fixed point v∗ for ε→ 0 and k →∞.

Proof. We have

‖v[k] − v∗‖2 = ‖M p[k] −M p∗‖2 = ‖M p[k] −MT̂(v∗)‖2
≤ ‖M p[k] −MT̂(v[k−1])‖2 + ‖MT̂(v[k−1])−MT̂(v∗)‖2
≤ ‖Msol(D(v[k−1]), p[k−1], N)−MT̂(v[k−1])‖2 + γ‖v[k−1] − v∗‖2
≤ ε+ γ‖v[k−1] − v∗‖2.

(7.36)
Recursion gives

‖v[k] − v∗‖2 ≤ ε+ γ‖v[k−1] − v∗‖2
≤ ε+ (γε+ γ2‖v[k−2] − v∗‖2) ≤ . . .

≤ ε(1 + γ + γ2 + · · ·+ γk−1) + γk‖v[0] − v∗‖2.
(7.37)

Using the limit of the geometric series, we deduce claim (i). Claim (ii) follows from
(i) under Assumption 6.26 (iv), since then γ < 1 and thus γk → 0 for k →∞.

We remark that literature on numerical methods for solving QVIs provides con-
vergence rates (see e.g. [122]) in the case of strongly monotone operators ∇G. In our
case, where ∇G is not strongly monotone, we can provide convergence rates only if
we have control over the component of p[k] which lies in the null space N (M).

We therefore consider the following special case: Assume that T̂(v[k]) ∈ N⊥(M)
and that the result of sol(D(v[k], p[k], N), when starting with a value p[k] ∈ N⊥(M),
stays in this subspace.

Exemplarily, we focus on the FISTA algorithm (Section 7.1.2) to solve the dual
problem (7.31).
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Let λmin be the smallest positive (recall that N (M) 6= {0}) and λmax be the

largest eigenvalue of M⊤ M. Using the fact that ‖x‖2 ≤ 1√
λmin
‖M x‖2 for x ∈ N⊥(M),

it follows from (7.9) (cf. Proposition 7.3), that

‖Msol(D(v[k], p[k], N)−MT̂(v[k])‖2 ≤
2
√
2̺

N + 1
‖M p[k] −MT̂(v[k])‖2, (7.38)

where ̺ := λmax

λmin
is the condition number of M⊤ M restricted to N⊥(M). (Recall that

p(0) = p[k] is the intitial value for the inner problem.) Please note that standard error
bounds consider ‖p[k]−T̂(v[k])‖2 as initial error on the right hand side of (7.38), while
we consider ‖M p[k] −MT̂(v[k])‖2 and require in (7.38) that p[k], T̂(v[k]) ∈ N⊥(M).

Proposition 7.7 (Convergence rates). Let the Lipschitz constant γ of M ◦ T̂ be less
than 1. Moreover, assume that the inner problem (7.31) can be solved with an error
bound

‖M p(N) −MT̂(v[k])‖2 ≤
δ

4
‖M p(0) −MT̂(v[k])‖2, (7.39)

where δ := 1 − γ is the contraction gap (cf. (6.116)) of the problem (7.28). Recall
that T̂(v[k]) in (7.39) is the exact solution of the inner problem. Consider a solution
p∗ of (6.92) and v∗ := M p∗. Then, Algorithm 4 converges according to

‖v[K] − v∗‖2 ≤
1

δ
exp

(
−δ

2
K

)
‖v[0] −MT̂(v[0])‖2, (7.40)

where K is the number of outer iterations.

Proof. Recall that in the k-th outer iteration we solve the inner problem (7.31) with
initial value p(0) = p[k]. The numerical solution p(N) of this inner problem is denoted
as p[k+1] in the outer loop. Thus, the required error bound (7.39) can be rewritten
as

‖M p[k+1] −MT̂(v[k])‖2 ≤
δ

4
‖M p[k] −MT̂(v[k])‖2, (7.41)

or equivalently, with v[k] := M p[k],

‖v[k+1] −MT̂(v[k])‖2 ≤
δ

4
‖v[k] −MT̂(v[k])‖2 = δ

4
rk, (7.42)

where rk := ‖v[k]−MT̂(v[k])‖2 = ‖M p[k]−MT̂(v[k])‖2. The proof of Proposition 7.7
follows the lines of the proof of Theorem 4.4 by Nesterov & Scrimali. Let v∗ be the
unique fixed point of M T̂(v) provided by Theorem 6.28 (2). From the Lipschitz-
continuity of M T̂(v) we have

rk ≥ ‖v[k] − v∗‖2 − ‖MT̂(v∗)−MT̂(v[k])‖2
≥ ‖v[k] − v∗‖2 − γ‖v[k] − v∗‖2 = δ‖v[k] − v∗‖2.

(7.43)
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Now we show rk ≤ exp(− δ
2
k)r0:

rk+1 = ‖v[k+1] −MT̂(v[k+1])‖2
≤ ‖v[k+1] −MT̂(v[k])‖2 + ‖MT̂(v[k+1] −MT̂(v[k])‖2
(7.42)

≤ δ
4
‖v[k] −MT̂(v[k])‖2 + γ‖v[k+1] − v[k]‖2

≤ δ
4
‖v[k] −MT̂(v[k])‖2 + γ‖v[k+1] −MT̂(v[k])‖2

+ γ‖v[k] −MT̂(v[k])‖2
(7.42)

≤ ( δ
4
+ δ

4
γ + γ)rk.

(7.44)

Inserting γ = 1− δ we derive

rk+1 ≤ ( δ
4
+ δ

4
(1− δ) + 1− δ)rk

= (1− δ
2
− δ2

4
)rk.

(7.45)

Applying (7.45) recursively, using (1− s)n ≤ exp(−sn) and the monotonicity of the
exponential function, we find

rk ≤ exp(−( δ
2
+ δ2

4
)k)r0 ≤ exp(− δ

2
k)r0. (7.46)

Combining (7.43) and (7.46), we finally obtain

δ‖v[k] − v∗‖2 ≤ exp(− δ
2
k)r0 = exp(− δ

2
k)‖v[0] − v∗‖2. (7.47)

Please note that by assumption we have γ < 1 and consequently δ = 1 − γ > 0.
Dividing (7.47) by δ gives the claimed error estimate.

Remark 7.8.

1D case: In the one-dimensional case the null space N (M) of M is spanned by the
vector (0, . . . , 0, 1)⊤. When considering Example 6.30 and the FISTA Algo-
rithm (Algorithm 3 above), we can guarantee that the sequence (p(k))k gener-
ated by FISTA stays in N (M)⊥, provided that the initial value p(0) = p0 is
chosen in N (M)⊥. This is due to the fact that the projection onto D(v[k])
decouples into independent projections to 1D intervals for each coordinate. In
particular, if p

(0)
n = 0, the constraint p

(0)
n ∈ [−αn, αn] is fulfilled and thus p

(0)
n

is not changed by the projection ΠD(v[k])(p), i.e. p
(0)
n = p

(1)
n = · · · = p

(N)
n = 0.

The sequence p(k) then converges to the solution p ∈ T̂(v[k]) ∩ N (M)⊥, which
is unique in this subspace. As a consequence, starting with p[0] ∈ N (M)⊥ for
the outer iteration, we can guarantee also p[k] ∈ N (M)⊥, such that the ini-
tial value of every subsequent inner problem is again in N⊥(M). The error
estimate (7.38) then allows to apply Proposition 7.7.

2D case: In the two-dimensional case there exist counter examples indicating that
(7.39) does not hold in general. The reason is that the convergence depends on
the component ‖p[k]−p‖N (M) of the initial error ‖p[k]−p‖2 ( p ∈ T̂(v[k]) fixed).
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7.2.3 Numerical Experiments

In order to verify the convergence of our algorithm, we revisit the example discussed
in Section 6.4.4, for which an analytic formula for a fixed point is at hand. Recall
that in this example the functional takes the form

F(u, v) := 1
2

n∑

i=1

|ui − fi|2 +
n−1∑

i=1

αi(v)|ui+1 − ui|. (7.48)

for u, f ∈ Rn, where the data f are given as

fi =

{
0 if i ∈ I1 ∪ I3,

1 if i ∈ I2.
(7.49)

For this particular case, the analytic form of a fixed point of u0 → argminuF(u; u0)
is provided by Lemma 6.31.

(a) data (b) ROF and solution-driven
adaptive solution

Figure 7.1: 1D example with analytic solution (cf. Section 6.4.4). Left: data f . Right:
solution u∗ of (7.48) (zoom, red line) for 150 grid nodes and parameters α0 = 0.2, κ = 0.6
compared to the solution of the standard ROF model (blue line) with α = 0.2. Smooth-
ing with the proposed approach provides a result with higher contrast compared to the
standard ROF model.

By means of this example, we experimentally verify the convergence rate pro-
vided by Proposition 7.7. To this end, we solve the corresponding QVI numeri-
cally with the proposed algorithm and investigate the experimental error. Fig. 7.2
shows the theoretical and experimental convergence rates (logarithmic error over
time steps) for this example and different contraction gaps δ = 1−λ2 = 1−α0κ‖L‖22.
(Please note that the positive contraction gaps assert uniqueness). The experimental
errors ‖u[K] − u∗‖2 = ‖Lp[K] − Lp∗‖2 stay significantly below the theoretical bound
and also show an exponential decay.
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Figure 7.2: Convergence rates. Plot of logarithmic numerical error (solid lines) to ana-
lytic solution over outer iteration steps for different contraction gaps δ = 1 − κα0µ2 =
0.1, 0.3, 0.5, 0.9 given by α0 = 2, κ = t

4α0
and t ∈ {0.9, 0.7, 0.5, 0.1} (black, blue, green,

red). The plot shows an exponential error decay, which stays well below the theoretical
bound (dashed lines). The bendings between step 6 and 8 is caused by the fact that the
point-wise errors reach machine accuracy.

7.3 A Newton-like Algorithm for Non-convex Op-

timization Problems

7.3.1 Introduction

In this section, we consider the optimization problem

min
u∈G
F(u), (7.50)

where G is a Lie group. We assume that G is embedded in an Euclidean space X.
As an example, we consider G = SE(3) ⊂ R3 × R3×3. We assume that F(u) is
differentiable but non-convex. The above setting is chosen in view of an application
presented in Section 8.6, namely the joint estimation of scene and egomotion from
monocular image sequences, where such an optimization problem arises.

In the following, we will discuss a Newton-like method to solve the problem (7.50).
Newton-like methods in the more general case of Riemannian manifolds, but with
the restriction on convex minimization problems, have already been studied in the
literature. An early reference to this topic is [60]. Convergence of such methods has
been intensively studied in [2, 77, 168, 181] and recently in [135]. The approach we
present below, however, considers the more special case of Lie groups and make use
of the group structure. Moreover, we consider also non-convex functionals F .

7.3.2 Preliminaries

In the following, we recall some facts about manifolds and Lie groups needed for the
presentation of our approach. To keep the presentation compact, we refer to [2] for
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the basic definitions of differential geometry and focus on some specific definitions
required in the context of Lie groups.

To begin with, let u · v denote the group operation on two elements u, v ∈ G and
e be the neutral element of this operation. We consider G acting on the manifold
M = G by defining

lu(v) := u · v. (7.51)

As already mentioned, we assume thatM is embedded in an Euclidean space. We
denote the inner product of this space by 〈·, ·〉.

The tangent space at point u is denoted by TuG. From the operator lu, we
derive its differential Lu, which maps bijectively from TeG to TuG. Thus, we can
identify each tangent space TuG with TeG. Moreover, the tangent space TeG can be
identified with a Lie algebra g. The collection of all pairs (u, TuG), u ∈ G is referred
to as the tangent bundle TM.

We equip the manifold G with a Riemannian metric by defining

〈v, w〉u := 〈(Lu)
−1v, (Lu)

−1w〉g (7.52)

for some metric 〈·, ·〉g on TeG = g. Identifying TuG with TeG, i.e. v = Luṽ and
w = Luw̃ for some ṽ, w̃, we see that the metric does not depend on the point u.
For the remainder of this section, we thus denote the Riemannian metric by 〈·, ·〉G.
Furthermore, we require the exponential map from TeG to G, which we denote by
Exp.

Next, we define the manifold gradient. We start with the classical gradient
∇F(u) in the embedding X. Based on this gradient we define the manifold gradient
∇G implicitly by the equation

〈∇GF(u), v〉G = 〈∇F(u), v〉, ∀v ∈ TuG, (7.53)

(cf. [2]) or, equivalently,

〈∇GF(u), Luv〉G = 〈∇F(u), Luv〉, ∀v ∈ TeG. (7.54)

Using the adjoint L∗
u of Lu, (7.54) can be rewritten as

〈L∗
u∇GF(u), v〉G = 〈L∗

u∇F(u), v〉, ∀v ∈ TeG. (7.55)

Thus, we can retrieve ∇GF(u) by projecting L∗
u∇F(u) onto TeG:

∇GF(u) := L∗
uΠTeG(L

∗
u∇F(u)), (7.56)

where ΠTeG(v) denotes the projection of v onto TeG.
Finally, we require the Levi-Civita connection ∇ of the manifold M, which

is defined as the unique torsion-free and metric preserving affine connection ([2])
∇ : C∞(M, TM)× C∞(M, TM)→ C∞(M, TM), given as

∇WV := lim
t→0

1
t

(
Lu(0)L

−1
u(t)V (u(t))− V (u(0))

)
(7.57)

for any trajectory u(t) : R→M with d
dt
u(t) = W (u(t)).
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Example 7.9. We provide two basic examples.

Rn: We considerM = Rn and identify it with the Lie group G = Rn. We represent
an element x ∈ Rn by a standard column vector x = (x1, . . . , xn)

⊤. Then the
group operation is given as the element-wise addition, x ·y = (x1+y1, . . . , xn+
yn)

⊤ and the neutral element is (0, 0, . . . , 0)⊤. The tangent space TeG can be
identified with the space Rn itself. On TeG, we consider the canonical basis
{ek}k=1,...,n of Rn and the standard scalar product 〈x, y〉 = x⊤y. The map-
pings lx, Lx,Exp and ΠTeG are just the identity operators. The Levi-Civita
connection ∇vw for v = (v1, . . . , vn)

⊤ simplifies to

∇vw =
n∑

i=1

〈w, ∂vi〉ei. (7.58)

SE(3): The Lie group SE(3) is embedded in R4×4. Since it is common to refer to
matrices with capital letters, we change our notation accordingly. The group
operation is the matrix product A · B. The neutral element is the identity
matrix. The operator lQ is given as lQW = QW . The Lie algebra g = se(3)
is given as

g =

{
W =

(
[w]× v
0⊤ 0

) ∣∣∣ w, v ∈ R3

}
, (7.59)

where

[w]× :=




0 −w3 w2

w3 0 −w1

−w2 w1 0


 (7.60)

represents the cross product of vectors through [w]×v = w × v. The mapping
LQ from TIdG to TWG is given as LQW = QW with the standard matrix
product and thus takes the same form as lq. Closed forms are available for the
projection onto the tangent space, and for Exp : TIdG→ G.

The Riemannian metric we consider is given as

〈W 1,W 2〉G := 〈[w1]×, [w
2]×〉+ 〈v1, v2〉. (7.61)

The Levi-Civita connection ∇W can be described, after choosing a basis for g,
by means of the Christoffel symbols. We refer to [17] for details.

⋄

7.3.3 Optimization

We consider subsequent update steps to derive a sequence (uk) such that F(uk)
decreases with k. Given uk, we determine uk+1 by

uk+1 = φ(tk, uk, dk) (7.62)
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with search direction dk, step size tk ∈ R+ and an update function φ given as

φ(t, u, d) := lu Exp(t · d). (7.63)

Let us now consider an operator B : TeG→ TeG such that

〈v, Bv〉G > 0 ∀v ∈ TeG, v 6= 0. (7.64)

Then,
dk := −B∇GF(e) ∈ TeG (7.65)

is a descent direction [17, Proposition 3], i.e.

d
dt
F(φ(t, uk, dk))|t=0 < 0, (7.66)

as long as ∇GF(e) 6= 0. Thus, since due to our assumption F(u) is smooth, it is
possible to find a tk > 0 such that F(uk+1) < F(uk).

Now we are going to use information from second-order derivatives to find a
suitable B. Our approach follows the classical Newton method for vector spaces Rn,
where one would choose B as the inverse of the Hessian of F(uk). On a Riemannian
manifold, the Levi-Civita connection ∇ takes the role of the Hessian. Applying
the Levi-Civita connection to the manifold gradient, i.e. ∇w∇GF(uk), describes the
change of ∇GF(uk) in the tangent space when moving from the point uk to to the
point φ(1, uk, d). We are looking for a dk such that we can reach a critical point
∇GF(φ(1, uk, dk)) = 0. Using

0
!
= ∇GF(φ(1, uk, dk)) ≈ ∇GF(uk) +∇dk∇GF(uk), (7.67)

we see that dk should be chosen such that the right hand side of (7.67) also vanishes,
i.e. that

∇dk∇GF(uk) = −∇GF(uk). (7.68)

Note that the Levi-Civita connection is linear in dk, thus we can find a linear operator
A : TeG→ TeG, such that

Adk = ∇dk∇GF(uk). (7.69)

Using (7.69), we reformulate (7.68) as

Adk = −∇GF(uk). (7.70)

We first focus on the case that A is positive definite. Then, A is invertible and (7.70)
can be equivalently written as

dk = −(A)−1∇GF(uk). (7.71)

Thus, choosing B := A−1 in (7.65), which is also positive definite, provides a descent
direction dk. We remark that in the case G = Rn the matrix A just becomes the

113



CHAPTER 7. NUMERICS

Hessian HF of F at uk, see Example 7.10 below. Thus the proposed approach in
the case G = Rn equals the classical Newton methods.

It remains to provide a suitable B when A is not positive-definite. In this case,
we consider an eigenvalue decomposition of A and propose to modify A by adding
a positive definite M , where the eigenvalues are chosen large enough to guarantee
that A+M is positive definite. Denoting the smallest eigenvalue of A by σmin < 0,
one choice would be to choose M = c Id with c = σmin + ε for some small ε > 0.
In general, the choice of M is depending on the specific application at hand. For a
particular example, where a specific choice of M is motivated, we refer to [17].

We remark that modifying matrix A in this way can be motivated by applying
a proximal point algorithm to the problem

min
d∈T

uk
G
h(d), h(d) := F(uk) + 〈∇GF(uk), d〉G + 1

2
〈d,Md〉G, (7.72)

such that h(d) is augmented by an additive quadratic term 1
2
〈d,Md〉G.

Example 7.10. We revisit the specific case G = Rn in Example 7.9. From (7.58)
we obtain with v := ∇GF(u)

∇w∇F(u) = HF(u)w, (7.73)

where HF(u) is the Hessian of F at u. In particular, the linear operator A with
Aw = ∇w∇F(u) = HF(u)w is just the Hessian HF(uk) of F(u), and thus, the
above choice of B = (A)−1 leads to the standard Newton method. ⋄

In the case that A is not invertible and is augmented by an additional term to
guarantee invertibility, it is not clear that the time step tk = 1 in (7.62) is optimal
for an efficient descent step. We therefore propose to use a standard line search to
determine the approximate optimal tk in each time step. In particular, we choose
Wolfe’s Rule, [27] as criterion for the line search. The line search is applied to
approximately solve

tk ≈ argmin
t>0
F(φ(t, uk, dk)). (7.74)

We refer to Section 8.6 for an application, which utilizes the above optimization
strategy.
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Applications

8.1 Image Restoration

In the following, we evaluate the adaptive regularization methods proposed in Chap-
ters 4 and 6 on three image restoration problems, namely image denoising, deblurring
and inpainting.

Our evaluation is based on the five test images depicted in Fig. 8.1, referred to
as cameraman, Lena, peppers, boat and mandrill. All undistorted images (referred
to as the original images in the following) are scaled to the range [0, 1] before a
distortion is applied.

For each restoration task we consider variational approaches of the form

u = argmin
u
S(u) +R(u; v), (8.1)

where u represents the restored image, S(u) is an application specific data term as
detailed in the individual subsections below and R(u; v) is the regularization term
depending on some parameter v. Here, v is chosen to be the input data f for the
data-driven approaches or – for the solution-driven approaches – found by solving
a fixed point problem (i.e. u = v), cf. Chapter 6. For the data-driven methods,
the numerical minimization of the variational problem (8.1) after discretization is
performed by means of the primal-dual method as described in Section 7.1.1. To
solve the fixed point problem of the solution-driven variants, i.e. u = v, we utilize
the algorithm proposed in Section 7.2.

The regularization methods we consider in our evaluation are:

1. weighted TV, see Example 4.25 with regularization strength α(x, v),

2. anisotropic TV, see Example 4.26 with edge indicator χe(x; v) as in (4.83) and
edge normals ve(x; v),

3. TV with double orientations, see Example 4.27 with two non-orthogonal ori-
entations r1(x; v) and r2(x; v),



CHAPTER 8. APPLICATIONS

Figure 8.1: Test images used to evaluate adaptive TV regularization for the appli-
cations of denoising (2nd row), deblurring (3rd row) and inpainting (4th row). The
first row shows the original undistorted images. For the application of deblurring,
due to the support of kernel function, the data are given only on Ωf ⊆ Ω. In the
test images for inpainting the regions colored in white indicate the regions to be
inpainted.
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4. anisotropic second-order TV, see Example 4.30.

For the first three methods we consider both the data-driven (d.d.) and solution-
driven (s.d.) variants. On anisotropic second-order TV we remark that the solution-
driven variant does not show significant differences to the data-driven variant in all
three tasks. For this reason we only consider the latter in our evaluation.

We compare to the following state-of-the-art regularization methods:

1. standard TV [142] see Section 2.3,

2. standard second-order TV [147] see (2.36) in Section 2.8.3, and

3. Total Generalized Variation (TGV) [28] see (2.37) in Section 2.8.3.

In addition, for each restoration task we choose one application-specific state-of-the-
art method to compare with, as detailed in the following sections.

We compare all methods qualitatively as well as quantitatively. For the latter
evaluation, we make use of the mean SSIM index proposed by Wang et al. [171],
which for each method under consideration is applied to the pair of original and
reconstructed image. The optimal value for similarity is 1. In addition, for the sake
of completeness, we also provide the peak-signal-to-noise ratio (PSNR) for each
reconstruction.

Both quantitative and qualitative comparison are fair only if for each method
suitable parameters are chosen. In order to determine (approximately) optimal
parameters, we utilize an automated search as discussed in the appendix at the end
of this section. Such an automated search is possible because of the availability of
the undistorted image.

8.1.1 Denoising

In the following, we evaluate the data-driven and solution-driven adaptive regulariza-
tion methods, introduced in Chapters 4 and 6, respectively, for denoising grayscale
images.

Our evaluation is based on the five test images depicted in Fig. 8.1, top row.
We consider the model of additive Gaussian noise with zero mean and standard
deviation σ = 0.1, cf. Section 2.2. The noisy versions of the five test images are
depicted in Fig. 8.1, second row.

In the variational approaches, we choose the data term

S(u) := 1

2
‖u− f‖2L2(Ω), (8.2)

as the data term, where f ∈ L2(Ω) represents the noisy input data.
In addition to the methods listed above, we choose BM3D [47] as application-

specific state-of-the-art methods.
For the ROF model, we use the primal-dual algorithm discussed in Section 7.1.1.

For the TGV approach we make use of code provided by the authors of [28].
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Method cameraman Lena peppers boat mandrill
std. TV 0.8078 0.7934 0.7941 0.7181 0.6467
TV2 0.8160 0.8143 0.8188 0.7334 0.6561
TGV 0.8143 0.7982 0.8101 0.7231 0.6490
BM3D 0.8556 0.8450 0.8346 0.7620 0.6895
weighted TV(d.d.) 0.8215 0.7934 0.7941 0.7181 0.6466
weighted TV(s.d.) 0.8243 (4) 0.7934 (2) 0.7967 (2) 0.7181 (4) 0.6466 (2)
anisotr. TV(d.d.) 0.8320 0.8283 0.7945 0.7181 0.6570
anisotr. TV(s.d.) 0.8324 (4) 0.8254 (4) 0.8073 (4) 0.7272 (4) 0.6595 (4)
double orient.(d.d.) 0.8254 0.8083 0.8056 0.7283 0.6459
double orient.(s.d.) 0.8254 (4) 0.8082 (4) 0.8055 (4) 0.7283 (4) 0.6471 (2)
anisotr. TV 2(d.d.) 0.8403 0.8361 0.8282 0.7501 0.6646

Table 8.1: Denoising. Quantitative comparison based on the similarity between
the denoised and original images. The ideal value is 1. For the solution-driven
approaches we choose the number K ∈ {2, 3, 4} of outer iterations, for which we
obtain the highest SSIM index after parameter optimization (K given in brackets).
We observe that BM3D [47] gives the best results. The best method among the
regularization approaches is the anisotropic second-order TV. For the weighted TV
approach in some cases the automated parameter optimization chooses κ = 0 as
optimal value, so that the method becomes similar to standard TV.

Method cameraman Lena peppers boat mandrill
std. TV(d.d.) 26.483 26.905 27.424 26.062 24.159
TV2(d.d.) 26.568 27.294 27.921 26.370 24.311
TGV(d.d.) 26.491 26.936 27.730 26.135 23.969
BM3D(d.d.) 28.550 28.446 28.527 27.022 24.845
weighted TV(d.d.) 27.081 26.901 27.421 26.061 24.194
weighted TV(s.d.) 27.077 (3) 26.899 (2) 27.512 (3) 26.063 (2) 24.195 (2)
anisotr. TV(d.d.) 27.100 27.957 27.407 26.063 24.338
anisotr. TV(s.d.) 27.489 (4) 27.729 (4) 27.940 (4) 26.338 (3) 24.355 (4)
double orient.(d.d.) 26.988 27.558 27.872 26.312 24.115
double orient.(s.d.) 26.995 (4) 27.555 (4) 27.870 (4) 26.313 (4) 24.101 (2)
anisotr. TV 2(d.d.) 27.336 27.923 28.220 26.690 24.479

Table 8.2: Denoising. Quantitative comparison based on the peak-signal-to-noise-
ratio (PSNR) of the denoised images. Also w.r.t. PSNR, BM3D [47] gives the best
results. When switching from the SSIM index to PSNR the ranking in most cases
stays the same, except e.g. for Lena, where data-driven anisotropic TV becomes the
second best, replacing the anisotropic second-order TV.
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(a) input image (b) standard TV (c) standard TV2

(d) TGV (e) BM3D (f) d.d. double orient.

(g) s.d. double orient. (h) d.d. weighted TV (i) s.d. weighted TV

(j) d.d. aniso. TV (k) s.d. aniso. TV (l) d.d. aniso. TV2

Figure 8.2: Denoising of the cameraman image. Qualitative comparison of the
considered denoising methods on the representative results. In order to highlight
differences, we provide a close-up of the head region in Fig. 8.3.
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(a) input image(0.5356) (b) standard TV (0.8942) (c) standard TV2 (0.8960)

(d) TGV (0.8999) (e) BM3D(0.9163) (f) d.d. double orientations
(0.8999)

(g) s.d. double orientations
(0.9000)

(h) d.d. weighted TV (0.9125) (i) s.d. weighted TV (0.9144)

(j) d.d. aniso. TV (0.8940) (k) s.d. aniso. TV (0.9104) (l) aniso. TV2 (0.9022)

Figure 8.3: Denoising of the cameraman image. Qualitative comparison of the
considered denoising methods on a close-up of the head region of the cameraman
image. (For the sake of completeness, we provide the SSIM indices, now determined
on the specific image region. The PSNR gives the same ranking.) BM3D [47] also
in terms of visual appearance provides the best result. Weighted TV produces an
almost as sharp result as BM3D. The other methods produce smoother results.
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(a) data-driven aniso. TV (b) solution-driven aniso. TV

(c) data-driven aniso. TV2 (d) BM3D

Figure 8.4: Denoising of the Lena image We evaluate the performance of the
anisotropic TV models to the best competing method, namely BM3D. In this exam-
ple we observe a slightly worser reconstruction from the solution-driven anisotropic
TV compared to the data-driven one. This is in agreement with the SSIM indices, see
Table 8.1. For the readers convenience, we also provide the results from anisotropic
second-order TV and BM3D. The latter gives the best results.
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(a) data-driven aniso. TV (b) solution-driven aniso. TV

(c) data-driven aniso. TV2 (d) BM3D

Figure 8.5: Denoising of the peppers image. In this example we observe an im-
provement by solution-driven adaptivity, which provides a more regular result with
less remaining noise than the data-driven variant. For the readers convenience, we
also provide the results from anisotropic second-order TV and BM3D. The latter
gives the best result.
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(a) data-driven aniso. TV (b) solution-driven aniso. TV

(c) data-driven aniso. TV2 (d) BM3D

Figure 8.6: Denoising of the boat image. We again observe an improvement by
solution-driven adaptivity, which compared to the data-driven variant provides a
more regular result with less remaining noise. For the readers convenience, we also
provide the results from anisotropic second-order TV and BM3D. The latter two
give the best results.
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(a) data-driven aniso. TV (b) solution-driven aniso. TV

(c) data-driven aniso. TV2 (d) BM3D

Figure 8.7: Denoising of the mandrill image. We compare the four best performing
methods on the mandrill image. A visual comparison shows that as in the quanti-
tative evaluation BM3D is the best performing method. In particular, it shows a
better reconstruction of the image textures than the other methods. The results of
the latter are of similar visual quality.
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Concerning the BM3D method we use the original MATLAB source, version 1.9,
from http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_software.

We compare all methods qualitatively as well as quantitatively. As mentioned
above, to provide a fair comparison, we perform an automated parameter selection,
in which for each method we optimize the results with respect to the mean SSIM
index proposed by Wang et al. [171], which for each method under consideration is
applied to the pair of original and reconstructed image.

We then compare the methods under consideration with respect to the SSIM
index and, for the sake of completeness, also with the peak-signal-to-noise-ration
(PSNR). The results are listed in Tables 8.1 (SSIM) and 8.2 (PSNR), respectively.

Let us first consider the SSIM indices of the results, see Table 8.1. The ideal
value would be 1. Clearly, the BM3D method outperforms the other methods.
The second best method and in particular the best regularization method is the
anisotropic second-order TV regularization.

Concerning the first-order methods we observe the following.
Firstly, in most cases we see an improvement of the data-driven adaptive methods

compared to standard TV model. Here, the weighted TV method is an exception,
since for four of five images the SSIM index is the same as for standard TV. The
reason is, that the automated parameter selection process chooses the value κ =
0, which means that there is actually no adaptivity applied. In contrast, data-
driven anisotropic TV and TV regularization based on double directions compared
to standard TV improve the results in four out of five cases.

Secondly, we focus on the improvement between data-driven and solution-driven
methods. We observe that solution-driven TV with double orientations in four
of five cases does not provide an improvement (with the mandrill image being an
exception). The reason might be that we do only choose the double directions ri in
an adaptive fashion, while parameter α is kept fix. It seems that these orientations
are quite well estimated already on the noisy input data. Solution-driven weighted
TV gives better results than data-driven weighted TV in two of five cases. In the
other three cases, as for the data-driven variants, the non-adaptive mode (κ = 0) was
chosen during parameter optimization. Solution-driven anisotropic TV improves the
results of the data-driven variant in four out of five cases. Compared to standard
TV we see that solution-driven anisotropic TV always gives better results.

Finally, we discuss the results of anisotropic second-order TV. As mentioned
above, we consider only the data-driven variant, since we do not observe significant
changes with the solution-driven counterpart. For four of the test images we observe
that anisotropic second-order TV provides the second best results after BM3D. The
exception is the mandrill image, which contains more textures than the other test
images. Consequently, none of the TV-based methods is able to provide a good
result. The fact that anisotropic second-order TV performs well in the other cases
demonstrates the importance of second-order regularization for the task of image
denoising.

Considering the PSNR instead of the SSIM index, we observe that the ranking
generally does not change, except for the first-order anisotropic TV, which now in
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two of five cases becomes the second best method after BM3D.

We also compare the results qualitatively. For the shortness of presentation, we
show the results of all considered methods only for the cameraman image, while for
the other test images we only compare a subset of the considered methods. The
depicted results all match those listed in Tables 8.1 and 8.2.

The results for the cameraman image are shown in Fig. 8.2. Since details are
only visible after zooming-in, we provide a close-up of the head region in Fig. 8.3.
On these results we observe that BM3D, as in the quantitative evaluation, gives
the best results with a lot of details. The adaptive methods in general provide
better results that standard TV, in particular with respect to contrast. Moreover,
the solution-driven variants slightly improve over the data-driven methods, e.g. in
preserving edges. The results of TGV as well as the anisotropic second-order TV are
slightly smoother, but not as blurry as the result from standard second-order TV.
In particular, we observe that introducing second-order TV prevents stair-casing
effects.

For the remaining test images, we concentrate on the data- and solution-driven
first-order anisotropic TV approach, data-driven second-order anisotropic TV and
BM3D as competing method, as those methods performed best in the quantitative
comparison. The corresponding results are depicted in Figs. 8.4 to 8.7. We observe
that the solution-driven approach in general is able to produce more regular results
compared to the data-driven approach. In the case of the Lena image, this comes
with a slightly worse reconstruction of details. For the mandrill image we do not
observe a significant improvement of the result. This might be due to the fact
that the image contains large textured areas. In the other three cases (cameraman,
peppers, boat) solution-driven adaptive regularization can significantly improve the
results with respect to contrast and image details. We currently are not aware of
an criterion to distinguish these cases. Further investigating this issue is planned
for future work. Comparing visually with the results from anisotropic second-order
TV and BM3D, we see that solution-driven anisotropic TV cannot cope with the
former ones, as we have already observed with the SSIM index.

8.1.2 Non-blind Deblurring

In this section we consider the application of non-blind deblurring. Here, the term
non-blind refers to the assumption that the blur kernel is known beforehand and
can be used in the restoration approach.

We generate artificial test data as follows. Let K(x) be a truncated Gaussian
kernel, K(x) ∈ [0, 1], such that the support supp(K) of K is bounded, i.e. there
exist some open ball B̊r(0) of radius r centered at 0 such that supp(K) ⊆ B̊r(0).
Given a (undistorted) image represented by u0 : Ω → R, we obtain data f on the
domain

Ωf := {x ∈ R2 | ∃ y ∈ Ω such that ‖x− y‖ ≤ r} (8.3)
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Method cameraman Lena peppers boat mandrill
std. TV(d.d.) 0.8348 0.8349 0.8493 0.7664 0.6533
TV 2(d.d.) 0.8015 0.8021 0.8173 0.6961 0.6253
TGV(d.d.) 0.8337 0.8367 0.8519 0.7629 0.6083
Schmidt(d.d.) 0.6123 0.6971 0.6823 0.7054 0.6140
weighted TV(d.d.) 0.8324 0.8376 0.8491 0.7667 0.6537
weighted TV(s.d.) 0.8754 (4) 0.8602 (2) 0.8704 (4) 0.7152 (4) 0.6803 (4)
anisotr. TV(d.d.) 0.8336 0.8000 0.8406 0.7662 0.6528
anisotr. TV(s.d.) 0.8708 (4) 0.8794 (4) 0.8894 (3) 0.8203 (4) 0.6788 (4)
double orient.(d.d.) 0.8324 0.8249 0.8382 0.7621 0.6506
double orient.(s.d.) 0.8718 (4) 0.8752 (4) 0.8827 (4) 0.8260 (4) 0.6743 (4)
anisotr. TV 2(d.d.) 0.7967 0.7956 0.8424 0.7638 0.6199

Table 8.3: Deblurring. Quantitative comparison based on the similarity between
the deblurred and original images. For the solution-driven approaches we choose
the number K (in brackets) of outer iterations out of {2, 3, 4}, for which we obtain
the the highest SSIM index after parameter optimization. The solution-driven ap-
proaches in most cases outperform the data-driven as well as the state-of-the-art
methods from the literature (with the only exception being weighted TV on the
boat image, where the data-driven variant outperforms the solution-driven variant).

Method cameraman Lena peppers boat mandrill
std. TV 26.013 27.506 28.354 26.463 24.6890
TV 2 24.793 26.286 27.211 25.283 23.1949
TGV 25.970 27.529 28.399 26.427 24.0133
Schmidt 24.045 24.972 26.095 25.688 24.0586
weighted TV(d.d.) 26.157 27.580 28.363 26.656 24.6958
weighted TV(s.d.) 28.235 (4) 28.525 (2) 29.360 (4) 26.124 (4) 25.1403 (4)
anisotr. TV(d.d.) 25.937 26.277 28.103 26.456 24.6060
anisotr. TV(s.d.) 27.877 (4) 29.348 (4) 30.074 (4) 27.775 (4) 25.1894 (4)
double orient.(d.d.) 25.940 27.312 28.146 26.422 24.6964
double orient.(s.d.) 27.903 (4) 29.236 (4) 30.043 (4) 28.045 (4) 25.1147 (4)
anisotr. TV 2(d.d.) 24.662 26.223 28.116 26.393 24.5884

Table 8.4: Deblurring. Quantitative comparison based on the PSNR between the
deblurred and original images. For the solution-driven approaches we choose the
number K (in brackets) of outer iterations out of {2, 3, 4}, for which we obtain
the the highest SSIM index after parameter optimization. The first-order solution-
driven approaches clearly outperform the data-driven as well as the state-of-the-art
methods from the literature.
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(a) input image (b) Schmidt (c) standard TV

(d) TGV (e) anisotr. TV2 (f) s.d. anisotr. TV

Figure 8.8: Deblurring of the cameraman image. Qualitative comparison of solution-
driven anisotropic first-order TV (f) as the best performing method w.r.t. the SSIM
index with the method by Schmidt et al., standard TV, TGV and anisotropic second-
order TV (b)–(e). Visual inspection confirms the finding from the quantitative
comparison that anisotropic first-order TV performs best.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.9: Deblurring of the cameraman image. Comparison of data-driven (left
column) and solution-driven (right column) adaptive regularization methods. All
three solution-driven approaches improve the results compared to the data-driven
variants.
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(a) input image (b) Schmidt (c) standard TV

(d) TGV (e) anisotr. TV2 (f) s.d. anisotr. TV

Figure 8.10: Deblurring of the Lena image Qualitative comparison of solution-driven
anisotropic first-order TV (f) as the best performing method w.r.t. the SSIM index
with the method by Schmidt et al., standard TV, TGV and anisotropic second-order
TV (b)–(e). Visual inspection confirms the finding from the quantitative comparison
that anisotropic first-order TV performs best.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.11: Deblurring of the Lena image. Comparison of data-driven (left col-
umn) and solution-driven (right column) adaptive regularization methods. All three
solution-driven approaches improve the results compared to the data-driven variants.
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(a) input image (b) Schmidt (c) standard TV

(d) TGV (e) anisotr. TV2 (f) s.d. anisotr. TV

Figure 8.12: Deblurring of the peppers image. Qualitative comparison of solution-
driven anisotropic first-order TV (f) as the best performing method w.r.t. the SSIM
index with the method by Schmidt et al., standard TV, TGV and anisotropic second-
order TV (b)–(e). Visual inspection confirms the finding from the quantitative
comparison that anisotropic first-order TV performs best.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.13: Deblurring of the peppers image. Comparison of data-driven (left
column) and solution-driven (right column) adaptive regularization methods. All
three solution-driven approaches improve the results compared to the data-driven
variants.
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(a) input image (b) Schmidt (c) standard TV

(d) TGV (e) anisotr. TV2 (f) s.d. anisotr. TV

Figure 8.14: Deblurring of the boat image. Qualitative comparison of solution-
driven anisotropic first-order TV (f) as the best performing method w.r.t. the SSIM
index with the method by Schmidt et al., standard TV, TGV and anisotropic second-
order TV (b)–(e). Visual inspection confirms the finding from the quantitative
comparison that anisotropic first-order TV performs best.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.15: Deblurring of the boat image. Comparison of data-driven (left col-
umn) and solution-driven (right column) adaptive regularization methods. All three
solution-driven approaches improve the results compared to the data-driven variants.

135



CHAPTER 8. APPLICATIONS

(a) input image (b) Schmidt (c) standard TV

(d) TGV (e) anisotr. TV2 (f) s.d. anisotr. TV

Figure 8.16: Deblurring of the mandrill image. Qualitative comparison of solution-
driven anisotropic first-order TV (f) as the best performing method w.r.t. the SSIM
index with the method by Schmidt et al., standard TV, TGV and anisotropic second-
order TV (b)–(e). Visual inspection confirms the finding from the quantitative
comparison that anisotropic first-order TV performs best, since it provides a much
sharper results with less artifacts.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.17: Deblurring of the mandrill image. Comparison of data-driven (left
column) and solution-driven (right column) adaptive regularization methods. All
three solution-driven approaches improve the results compared to the data-driven
variants. In particular, much less artifacts from the deblurring occur.
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given by

f(x) :=

∫

Br(0)

u0(x− y)K(y) dy. (8.4)

In addition, to show robustness of our method with respect to noise, we assume
that f is affected by additive Gaussian noise with zero mean and standard deviation
σ = 0.01 (cf. the noise model in Section 2.2). Test data generated in this way are
depicted in Fig. 8.1, third row.

The data term we consider is 1
2
‖Au − f‖2L2 , see Example 4.21. We observe

that after discretization operator A is positive definite. For this reason, we omit an
additional term ε‖u‖22, which would be required in case of non-strict convex data
terms (cf. Chapter 6). We obtain deblurring approaches by combining this data
term with each of the regularizers mentioned above.

As additional state-of-the method, we evaluate the method proposed by
Schmidt et. al. [151]. We use the original MATLAB source code for ’Discrimi-
native Non-blind Deblurring’ from the website http://www.gris.tu-darmstadt.

de/research/visinf/software/index.en.htm. In this method, we use the pre-
learned MRF model, which is provided in the software package.

For the variational approaches, as before, we perform an automated parame-
ter selection, cf. the appendix below. For the method by Schmidt, there are no
additional parameters to be optimized over.

Again, we compare the results of the method under consideration quantitatively,
see Tables 8.3 (SSIM index) and 8.4 (PSNR) as well as qualitatively by visual inspec-
tion, see Figs. 8.10 to 8.17. We observe that both quantitatively and qualitatively
the solution-driven approaches clearly outperform the state-of-the-art as well as the
data-driven adaptive approaches. In case of the test images Lena, peppers and man-
drill solution-driven anisotropic TV gives the best results, while for the cameraman
image weighted TV and for the boat image TV with double orientations perform
best.

8.1.3 Inpainting

In order to define an inpainting task, we provide a mask m : Ω → {0, 1}, which
indicates regions of missing information by 0. In turn, the domain Ωf of valid
information is given as Ωf := {x ∈ Ω | m(x) = 1}. For our test images we consider
regions of missing data, which regularly arranged squares of 7 × 7 pixels. These
regions are indicated by white color in Fig. 8.1, bottom row.

The data term we consider is given as

S(u) = ε‖u‖2L2(Ω\Ωf )
+ ιK(u), (8.5)

where ε > 0 is a small constant, so that the first term guarantees strict convexity of
the optimization problem. The constraint set K is chosen to be

K := {u ∈ BV (Ω) | u = f a.e. on Ωf}, (8.6)

138



8.1. IMAGE RESTORATION

Method cameraman Lena peppers boat mandrill
std. TV(dd) 0.9693 0.9573 0.9642 0.9502 0.9317
TV 2(dd) 0.9709 0.9646 0.9719 0.9625 0.9379
TGV(dd) 0.9689 0.9639 0.9722 0.9606 0.9349
Garcia(dd) 0.9660 0.9656 0.9693 0.9613 0.9346
weighted TV(dd) 0.9693 0.9573 0.9642 0.9502 0.9317
weighted TV(sd) 0.9694 (4) 0.9574 (2) 0.9643 (2) 0.9504 (2) 0.9336 (4)
aniso. TV(dd) 0.9680 0.9654 0.9695 0.9504 0.9317
aniso. TV(sd) 0.9771 (3) 0.9754 (2) 0.9712 (3) 0.9648 (4) 0.9445 (4)
double orient.(dd) 0.9651 0.9534 0.9615 0.9500 0.9219
double orient.(sd) 0.9730 (4) 0.9623 (4) 0.9672 (3) 0.9528 (3) 0.9363,(4)
aniso. TV 2(dd) 0.9708 0.9660 0.9716 0.9635 0.9378

Table 8.5: Inpainting. Quantitative comparison based on the SSIM index. The ideal
value is 1. We observe that in four of five cases, solution-driven anisotropic regular-
ization outperforms the other approaches. On the peppers image, Total Generalized
Variation (TGV) provides the best result. Moreover, we observe that second-order
regularization often provides the second best result, indicating that higher-order is
advantageous for the task of inpainting.

Method cameraman Lena peppers boat mandrill
std. TV(dd) 29.528 30.079 32.952 29.660 29.7239
TV 2(dd) 30.084 31.240 34.210 31.364 30.3503
TGV(dd) 30.033 31.326 34.540 31.302 29.8381
Garcia(dd) 29.212 31.457 33.719 31.473 29.8643
weighted TV(dd) 29.528 30.079 32.952 29.660 29.9084
weighted TV(sd) 29.741 (4) 30.084 (3) 32.953 (4) 29.663 (2) 30.0613 (4)
aniso. TV(dd) 29.712 31.223 34.144 29.457 29.9103
aniso. TV(sd) 31.910 (3) 33.024 (2) 34.470 (3) 32.106 (4) 31.0784 (4)
double orient.(dd) 28.743 29.460 32.911 29.846 28.8730
double orient.(sd) 31.279 (4) 31.132 (4) 33.694 (4) 30.334 (4) 30.3306 (4)
aniso. TV 2(dd) 29.9890 31.405 34.092 31.499 30.3565

Table 8.6: Inpainting. Quantitative comparison based on the PSNR of the inpainted
images. The ranking of the methods is similar to those base on the SSIM index. In
four of five cases, solution-driven anisotropic regularization outperforms the other
approaches.
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(a) d.d. weighted TV

→

(b) s.d. weighted TV

(c) d.d. anisotr. TV

→

(d) s.d. anisotr. TV

(e) d.d. TV with double orienta-
tions

→

(f) s.d. TV with double orienta-
tions

Figure 8.18: Inpainting of the cameraman image. Comparison of data-driven
(left column) and solution-driven (right column) approaches. Only the solution-
driven approaches are able to transport geometric information into the regions to
be inpainted. Solution-driven anisotropic TV provides the best result.
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(a) standard TV (b) standard second-order TV

(c) TGV (d) solution-driven aniso. TV

Figure 8.19: Inpainting of the cameraman image. Comparison of the solution-
driven anisotropic TV (d) to the three best performing non-adaptive approaches,
which are standard TV (a), second-order TV (b) and TGV (c). The solution-driven
approach is much better able to transport geometric information into the areas of
missing information (see e.g. neck or camera). Textures (see. e.g. the grass) are not
well reconstructed by any method.
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(a) standard second-order TV (b) TGV

(c) Garcia (d) solution-driven aniso. TV

Figure 8.20: Inpainting of the Lena image. Comparison of solution-driven
anisotropic TV (d) to standard second-order TV (a), TGV (b) and Garcia’s
method (c). The solution-driven approach is much better able to transport geomet-
ric information into the areas of missing information (see e.g. Lena’s hair streaks).
Textures (e.g. the stola) are not well reconstructed by any method.
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(a) standard second-order TV (b) TGV

(c) Gracia (d) solution-driven aniso. TV

Figure 8.21: Inpainting of the peppers image. Comparison of solution-driven
anisotropic TV (d) with standard second-order TV (a), TGV (b) and Garcia’s
method (c). For these results differences between the methods are not that obvious
as for the other examples considered. Critical areas are e.g. along the silhouettes of
the long small pepper and the stem of the pepper in the image center.
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(a) standard second-order TV (b) TGV

(c) Garcia (d) solution-driven aniso. TV

Figure 8.22: Inpainting of the boat image. Comparison of solution-driven
anisotropic TV (d) with standard second-order TV (a), TGV (b) and Gracia’s
method (c). The solution-driven approach is much better able to transport geo-
metric information into the areas of missing information (see e.g. the masts).
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(a) standard TV (b) standard second-order TV

(c) TGV (d) solution-driven aniso. TV

Figure 8.23: Inpainting of the mandrill image. Comparison of solution-driven
anisotropic TV (d) to standard TV (a), standard second-order TV (b), and TGV (c).
The solution-driven approach is much better able to transport geometric informa-
tion into the areas of missing information (see e.g. the borders of the nose bridge).
Textures (e.g. hairs) are not well reconstructed by any method.
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where f : Ωf → R are the known image data. We combine this data term with each
of the regularization terms listed above.

In the following we compare the adaptive regularization approaches to
standard TV regularization, standard second-order TV and Total Generalized
Variation (TGV) [28] and, in addition, to the inpainting method proposed
by Garcia [61]. For the latter, we use the MATLAB source code available
at the website http://www.mathworks.com/matlabcentral/fileexchange/

27994-inpaint-over-missing-data-in-1-d--2-d--3-d--n-d-arrays/

content/inpaintn.m.
As in the applications before, we evaluate the methods under consideration both

quantitatively and qualitatively. From the qualitative comparison, see Tables 8.5
and 8.6, we observe that the data-driven approaches are not able to cope with the
state-of-the-art methods. Concerning the solution-driven approaches, we observe
that weighted TV does not provide a significant improvement compared to its data-
driven variant. In contrast, anisotropic TV and TV with double directions show
a clear improvement. In particular, solution-driven anisotropic TV clearly outper-
forms the other methods in four of five cases. The only exception is the peppers
image, on which the second-order methods headed by TGV perform better.

Next, we focus on the qualitative evaluation. Let us first compare the data-
driven with their solution-driven counterparts. For this purpose, we focus on the
cameraman image. Fig. 8.18 shows the results of the adaptive methods. We observe
that the solution-driven approaches different to the data-driven adaptive methods
are able to transport geometric information into the regions to be inpainted, which
explains their favorable performance. Solution-driven anisotropic TV provides the
best result.

We now turn to a comparison of adaptive TV regularization to state-of-the-
art methods. For the compactness of presentation, we focus on solution-driven
anisotropic TV compared to the three best performing non-adaptive state-of-the-art
methods. The corresponding results are depicted in Figs. 8.19 to 8.23. A visual
inspections shows that solution-driven anisotropic TV outperforms the other ap-
proaches, which supports the findings from the quantitative evaluation. Finally, we
remark that, as regularization approaches with local differential operators in gen-
eral restore geometric (cartoon-like) data much better than textures, non of the
considered regularization methods is able to sufficiently restore textured regions.

8.1.4 Image Evolution by Solution-driven Adaptivity

In the previous section we compared non-adaptive, data-driven and solution-driven
TV regularization approaches. For this comparison, we optimized the parameter
setting for each approach separately. As a consequence, when directly comparing
a data-driven approach to its solution-driven counterpart, the parameters sets in
general differ not only by the number of outer iterations (K = 1 for data-driven and
K > 1 for solution-driven), but potentially in all parameters. (Once again we stress
that such an parameter optimization is required for a fair comparison.)
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(a) Denoising (b) Deblurring

(c) Inpainting

weighted TV - cameraman
weighted TV - Lena
weighted TV - boat
weighted TV - peppers
weighted TV - mandrill
anisotropic TV - cameraman
anisotropic TV - Lena
anisotropic TV - boat
anisotropic TV - peppers
anisotropic TV - mandrill

Figure 8.24: [Best viewed in color.] Evolution of the SSIM index during the outer
iteration of solution-driven first-order weighted TV (dashed lines) and anisotropic
TV (solid lines). In most cases we see an increase during the first three to four outer
iterations. After five iterations usually the SSIM index becomes constant.
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input k = 1 k = 2 k = 5 k = 10

Figure 8.25: Inpainting. We depict the result of solution-driven anisotropic TV
after k = 1, 2, 5 and 10 outer iteration steps. We observe that geometric information
is transported into the areas to be inpainted. Due to the nature of the regularization
term, textures are less well reconstructed than cartoon-like image regions. The
results typically stabilize during the first 10 iterations.
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On the other hand, we can also investigate how the results evolve during the outer
iteration, while the rest of the parameters is kept fixed. We refer to the sequence of
results generated by the outer loop as the evolution of the solution, having in mind
that we expect convergence to a fixed point.

Figure 8.24 shows the evolution of the SSIM index during the outer iteration
of solution-driven adaptive regularization for the three different image restoration
tasks. As parameters we have chosen the ones found by parameter optimization for
the case of K = 4 outer iterations. However, for the weighted TV approaches, in
case that this parameter optimization led to κ = 0 (i.e. the non-adaptive case), in
order to demonstrate the effect of adaptivity, we consider κ = 0.1 instead.

We observe a relatively smooth behavior of the SSIM index, which in most cases
increases during the two to three outer iterations and then stays fairly constant.
We remark that in general there is no guarantee of an improvement of the SSIM
index with increasing k. We observed cases, where the optimal SSIM value already
was reached after the first outer iteration, followed by a slight decrease afterwards.
We currently are not aware of an criterion on the parameter selection to guarantee
an improvement of the SSIM measure during the outer iteration. Answering this
question is part of future work.

Finally, we want to discuss the visual changes during the outer iterations. For
the applications of denoising and deblurring, these changes mainly occur between
the first and second iteration. The change between the second and third iteration
are less significant and the subsequent changes are even too weak to observe them
visually. Typically after 5 iterations there is basically no change, which supports
experimentally that the sequence converges to a fixed point. The overall change
during the outer iterations is of the same quality as the difference of the results
depicted in Figs. 8.2 and 8.3, (f) versus (g), (h) versus (i) and (j) versus (k), Figs. 8.4
to 8.7, (a) versus (b) and Figs. 8.9, 8.11, 8.13, 8.15 and 8.17, left versus right column.
(Recall that those results different parameter settings where used for data-driven and
solution-driven variants.) For this reason we omit a visual inspection of the evolution
in the cases of denoising and deblurring.

For the task of inpainting, using anisotropic TV, we remark that significant
changes take place not only between the first and second iteration, but also in the
subsequent ones. We depict the corresponding results after K = 1, 2, 5 and 10 outer
iterations for exemplarily selected image regions in Fig. 8.25. It can be observed
how geometric information is transported into the regions with missing data. The
sequences typically stabilize during the first 10 outer iterations.

8.1.5 Relation to Non-Convex Regularization

Introducing adaptivity in TV regularization locally changes the way how the gra-
dient (or higher derivatives) of the final solution is penalized. To gain insight into
this effect, with a given solution u∗, one can study the empirical distribution of
|∇u∗(xi)| versus 〈∇u∗(xi), p(xi)〉 (borrowing the ∇-notation from the continuous
setting), where p is the dual variable determined during the optimization process.
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We do this exemplarily for the case of denoising the cameraman and Lena images
and for weighted TV regularization, where 〈∇u∗(xi), p(xi)〉 = αi‖∇u∗(xi)‖.

Studying the distribution of the pairs (|∇u∗(xi)|, αi|∇u∗(xi)|)i, which describes
how the individual discrete gradients are penalized in the regularization term, see
Fig. 8.26, one recognizes that the adaptive approaches mimic a non-convex regular-
izer. For the other test images, we observe similar distributions.

(a) cameraman, data-driven (b) cameraman, solution-driven

(c) Lena, data-driven (d) Lena, solution-driven

Figure 8.26: A-posteriori distribution of (|∇u∗(xi)|, αi |∇u∗(xi)|)i (black dots) from
the data-driven and solution-driven weighted TV regularization with α0 = 0.1 and
κ = 1 when denoising the cameraman image and the Lena image, respectively.
We compare these distributions to (|∇u∗(xi)|, α0|∇u∗(xi)|) (gray line), where α0 is
the maximum value of the regularization strength. We observe that the weighted
TV approach mimics non-convex regularizers. Increasing κ leads to more concave
shapes.

8.1.6 Appendix: Parameter Selection

When aiming at a quantitative comparison of image restoration methods, it raises
the question of how the parameters for each considered method should be chosen. In
the following we discuss the approach we apply prior to such quantitative comparison
in order to guarantee an objective parameter selection.
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(a) denoising, PSNR optimized (b) denoising, SSIM optimized

(c) deblurring, PSNR optimized (d) deblurring, SSIM optimized

(e) inpainting, PSNR optimized (f) inpainting, SSIM optimized

Figure 8.27: Influence of quality measure on automated parameter selection: We
consider the applications of denoising, deblurring and inpainting on the cameraman
image and focus on standard TV regularization. We optimize the parameter α of the
TV regularizer by a hierarchical grid search using the PSNR (left column) and the
SSIM index (right column). Obviously the SSIM index is the more suitable quality
measure for the task of finding optimal parameters.
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Method main secondary fixed
std. TV α N
double orient. α σ, ρ N
weighted TV α, κ σ N
anisotr. TV αmin, αmax s, σ, ρ N
TV2 α, β N
TGV α0, α1 N
anisotr. TV2 αmin, αmax, γmax s1, s2, σ, ρ1, ρ2 N , γmin = αmin,
BM3D σ ( noise level)
Schmidt [151] - - learned pw. MRF model
Garcia - - N

Table 8.7: Parameter selection: for each considered method we perform a hierarchi-
cal grid search on the main parameter, followed by a coordinate descent method on
all parameters except for the fixed ones. For each candidate set of parameters, we
evaluate the SSIM index [171] between reconstructed and original image.

Only if two methods are closely related to each other, one may consider to
use the same parameter set on each method to demonstrate differences in their
behavior. The methods we consider, however, are too different in the nature of their
parameters to follow this strategy. Instead and in view of practical applications,
where the objective is to find the best image reconstruction possible, we consider an
individual tuning of the parameters for each method.

Our strategy is based on the requirement that the original undistorted images
(’ground truth’) are available, so that we can utilize an arbitrary distance or simi-
larity measure between reconstructed and original image to determine optimal pa-
rameters. Here, we focus on two commonly used quality measures, the peak-signal-
to-noise-ratio (PSNR) and the mean SSIM index proposed by Wang et al. [171].

Since a manual tuning of the parameters is too tedious, an automated approach
is preferable. One approach is a hierarchical grid search. In this approach a region
of interest in the parameter space is overlay with a regular grid and the optimal
parameter choice over all grid nodes is determined by an exhaustive search. After
finding the optimal grid node, we overlay the neighborhood of this node by a finer
grid and re-start the search for the optimal parameters on this finer grid. This
process is iterated several times. We observe that the effort of this search grows
exponentially with the dimension of the search space, i.e. the number of parameters
to optimize over. Therefore a hierarchical grid search is tractable in reasonable time
for up to three parameters.

An alternative to a hierarchical grid search is a coordinate descent approach. In
this approach one performs a loop of all parameters and for each parameter i tries
to optimize the output by changing the parameter by a small offset ±hi. If this try
was successful, one continues with the same parameter. Otherwise one moves on to
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8.1. IMAGE RESTORATION

the next parameter. In the situation that no further optimization is possible with
the current vector h = (h1, . . . , hn)

⊤, this vector is reduced in length and the loop
is continued until h falls below a given threshold.

Our experiments show, that it is advantageous to select (up to) three main
parameters, on which a hierarchical grid search is performed. and afterwards proceed
with a coordinate descent approach on all parameters. (We refer to parameters
where only coordinate search is applied to as secondary parameters.) As main
parameters we choose those determining the regularization strength and for weighted
TV regularization also the variable for the edge sensitivity. The number of iteration
steps is excluded from the optimization, and instead set to a sufficiently large value
(= 5000). The reason for this fixed large number is that we want to guaranteed
convergence in any case. We refer to Table (8.7) for a detailed list of the main,
secondary and fixed parameters.

On our parameter selection we remark the following.

1. Due to the fact that the quality measure on the results as a function of the
parameters may have local minima, and that our parameter selection approach
only tests a finite number of parameters, there is no guarantee that the found
parameters are optimal. However, as a visual inspections shows, we can con-
sider them as a good approximation. For the shortness of presentation we
refer to those as the optimal parameters, referring to the optimality among
the checked set of parameters.

2. Concerning the non-adaptive regularization approaches and the state-of-the-
art methods from the literature, the main parameters actually comprise all
parameters. Consequently, the parameter optimization by hierarchical grid
search addresses all parameters.

It remains to choose the measure to compare reconstructed and original image,
where as candidates we consider the PSNR (which in view of optimization is equiv-
alent to using the mean-square error) and the mean SSIM index. To illustrate the
difference, we consider standard TV regularization for the applications denoising,
deblurring and inpainting on the cameraman image. To this end we optimize the
parameter α by means of a hierarchical grid search both with respect to PSNR and
SSIM. The results obtain with the found parameters are depicted in Fig. 8.27. We
observe by visual inspection that the parameters being optimal with respect to the
PSNR lead to results with lower quality (noise artifacts, blurriness, inefficient in-
painting) compared to parameters optimized with respect to the SSIM index. We
therefore select the SSIM index for determining optimal parameters in our experi-
ments.
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CHAPTER 8. APPLICATIONS

8.2 Displacement Regularization

(a) (b)

Figure 8.28: Test image cards used for the evaluation of displacement regularization.
The original image (a) is distorted by artificial displacements errors (b).

A standard approach for retrieving discrete data (ui)i from a continuous signal u
is the process of sampling, in which the signal is evaluated at pre-defined sampling
points (xi)i ∈ Ω for some domain Ω ⊂ Rd:

ui := u(xi). (8.7)

A commonly used noise model for this process is to assume noise on the sampled
data ui. In the following we consider a different noise model, where the noise is
affecting the position of the sampling points xi instead of the data ui.

To this end, let u : Rd → Rm be a function representing continuous scalar- or
vector-valued data on the open bounded domain Ω ⊂ Rd.

We study the following problem: Assume that function u(x) has to be sampled
at positions (xi)

N
i=1 ⊂ Ω, and that during the sampling a certain error in the location

of the sampling point is induced, i.e. u is sampled at position Φ(xi) instead of xi,
where Φ : Ω → Rd. Please note that, despite the fact, that a sampling process is
typically understood as a process of collecting data at discrete positions, we prefer
to stay with a continuous formulation of the problem. In the following we denote
the sampled function by

u0 : Ω→ Rm,

x 7→ u0(x) := u(Φ(x)).
(8.8)

We refer to φ(x)− x as a sampling error or displacement error. Fig. 8.28 shows an
example of an image with sampling errors.

Given data u0 corrupted with displacement errors, we consider the task of re-
constructing u from u0. To this end we assume that u is a smooth function, so that
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8.2. DISPLACEMENT REGULARIZATION

we can make a first order Taylor series expansion on u0(x),

u(0)(x) = (u ◦ Φ)(x) = u(x+ (Φ(x)− x))

≈ u(x) +∇u⊤(x) (Φ(x)− x),
(8.9)

where

∇u =




∂1u1 ∂1u2 · · · ∂1um

∂2u1 ∂2u2 · · · ∂2um
...

...
. . .

...
∂du1 ∂du2 · · · ∂dum


 (8.10)

is the Jacobian of u and ≈ in (8.9) symbolizes that the left hand side approximates
the right hand side for small displacements Φ− Id. In the following, we neglect the
approximation error in (8.9), so that equality holds.

We remark that in the case of scalar data. i.e. for m = 1, (8.9) approximates the
standard optical flow equation:

∂u

∂t
(x, t) + (∇u)⊤(x, t)(Φ(x, t)− x) = 0 . (8.11)

The relation is immediate if one considers Φ− Id as the optical flow and u− u(0) as
a time discretization of a time dependent function u(t). The optical flow problem,
however, consists in the task of finding Φ for a given pair u, u0, while we consider
restoring an unknown u from a given u0. In the scalar case the system is un-
derdetermined. However, it is solvable at positions, where ∇u does not degenerate.
For vector-valued functions instead, the system becomes overdetermined in the case
m > d and a sufficiently large column rank of ∇u. Then, to determine Φ, the least
squares problem

‖∇u⊤(x)(Φ(x)− x)− u(0)(x) + u(x)‖22 (8.12)

has to be considered. A minimizer of (8.12) is given by

Φ(x)− x = (∇u⊤(x))†(u(0)(x)− u(x)), (8.13)

where (∇u⊤(x))† denotes theMoore–Penrose or pseudo–inverse (see [121]) of∇u⊤(x).
The above ansatz to use the pseudo–inverse to estimate a displacement Φ from

a given pair of images, provides already a simplistic solution to the optical flow
problem. However, this approach assumes small displacements and is only capable
to capture components of the displacement orthogonal to the null space of ∇u.
Another issue is, that it is very sensitive to noise.

Let us now consider the problem of finding the pairs (u(x),Φ(x)) of minimal
energy satisfying the constraint u(Φ(x)) = u0(x) for given u0.

For solving this problem approximately, we propose a variational method con-
sisting in minimization of the functional

1

2

∫

Ω

‖Φ(x)− x‖22 dL+R(u) (8.14)
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over the set of functions satisfying u(0) = u ◦ Φ. The regularization term R(u) is
defined as

R(u) := α

∫

Ω

‖∇u(x)‖pF dx, (8.15)

where α > 0, ‖ · ‖F is the Frobenius norm and p is some positive integer.
In the following, for notational convenience, we omit parameter x indicating the

spatial dependency of functions and write e.g. u instead of u(x). Inserting (8.13)
into (8.14), we obtain

Fu(0)(u) :=
1

2

∫

Ω

(u− u(0))⊤(∇u⊤∇u)†(u− u(0)) dL+R(u)

=
1

2

∫

Ω

(u− u(0))⊤A⊤(u)A(u)(u− u(0)) dL+R(u),
(8.16)

where we introduced the abbreviation A(u) := (∇u⊤)†.

Remark 8.1. We remark that the weighting of the data term by a factor 1/‖∇u(x)‖p,
which introduces non-convexity of the functional, can also be modeled by means of
the strategies discussed in Chapters 4 and 6, i.e. as a data-driven weighting of
the data term with weight 1/‖∇u0(x)‖p, where (assuming f ≈ u) or by a solution-
driven fixed point approach. We will discuss and compare the different strategies in
the experimental part below.

Scalar Data (m = 1)

In the scalar case, we can utilize the fact that an analytical form of the pseudo-
inverse A(u) of (∇u)⊤ can be provided as

A(u) =
1

‖∇u‖22

(
∂xu
∂yu

)
. (8.17)

Using (8.17), functional (8.16) becomes

Fu(0)(u) :=
1

2

∫

Ω

(u− u(0))2

‖∇u‖22
+ α‖∇u‖p2 dL. (8.18)

Note that for scalar data u, the Frobenius norm of ∇u equals the Euclidean norm.
In [97] we have provided a motivation for generalizing this functional to

Fu(0)(u) :=
1

2

∫

Ω

(u− u(0))2

‖∇u‖p2
+ α‖∇u‖p2 dL (8.19)

for arbitrary integer p > 0, defined on the function space L2(Ω) ∩W 1,p(Ω). Please
note that the functional (8.19) is allowed to take the value +∞ and moreover, that
the functional (8.19) takes the form

Fu(0)(u) :=

∫

Ω

F (x, u(x),∇u(x)) dx, (8.20)
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where F (x, ξ, ν) is non-convex with respect to ν. Recalling the discussion of func-
tionals of this form in Section 5.1, we observe that Fu(0)(u) is not weakly lower
semi-continuous. We therefore can only guarantee existence of generalized minimiz-
ers, i.e. minimizers of the relaxed functional F♦ (p = 2) or F♦BV (u) (p = 1) (cf.
Chapter 5), respectively. We refer to F♦ as the non-convex quadratic (NCQ) func-
tional and to F♦BV (u) as the non-convex bounded-variation (NCBV) functional. We
propose to use these relaxed functionals to retrieve variational methods to remove
displacement errors in scalar data. For the numerical treatment of both we refer to
[97].

We remark, that the non-convex weight introduced in (8.19) could also be treated
in a fixed point approach as considered in Chapter 6: find a fixed point of

u0 → argmin
u
F(u; u0) := argmin

u

∫

Ω

‖u(x)− f(x)‖2
‖∇(u0)σ(x)‖p2 + εp

dx+ αR(u), (8.21)

for p ∈ {1, 2} and

R(u) =
{
TV (u) for p = 1,∫
Ω
‖∇u|2 dL for p = 2.

(8.22)

Please not that in (8.21) we introduced some regularization in the denominator to
avoid division by zero. In addition, if p = 1, we require a pre-smoothing of u0

denoted by (u0)σ to have ∇u0(x) well-defined.
However, our experiments show that such an approach for the proposed weighting

of the data term does not lead to satisfactory results, since the reconstruction quality
decreases during the fixed point iteration. Consequently, stopping after the first
iteration is advisable, i.e. it becomes a data-driven approach and relates to the
minimization problem

min
u

∫

Ω

‖u(x)− f(x)‖2
‖∇f(x)‖p2 + εp

dx+ αR(u). (8.23)

We refer to this approach as weighted L2−Lp and take it into account for comparison
with NCQ and NCBV.

Let us now experimentally compare the NCQ and NCBV approaches to ap-
proaches with standard data L2-term combined with TV (ROF) or TGV regular-
ization and the weighted L2 − Lp approach, respectively.

To this end we consider six test images, the cards image introduced in Fig. 8.28
and the five images depicted in Fig. 8.29. These images are distorted by artificial
displacement errors. Analogously to our evaluation in Section 8.1, we apply an
automated parameter selection to determine approximately optimal parameters for
each method with respect to the SSIM measure [171]. Table 8.8 shows the resulting
SSIM values. We observe that the NCBV approach outperforms the other methods
in four of five cases. Only for the cards image the situation is different, which might
be due to the cartoon nature of the image. Here, the weighted L2 − L2 approach
provides the best result. However, we will see that the visual impression of the
corresponding result is not that satisfactory.
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Figure 8.29: Further test images with artificially added displacement errors used for
the evaluation of displacement regularization.

For the sake of compactness, we depict the corresponding results only for the
cards and cameraman image, see Figs. 8.30 and 8.31, respectively. We observe that
the visual quality of the results, except for the cards image, is in agreement to the
retrieved SSIM values, i.e. the proposed approaches outperform the approaches, in
which the standard L2 data term is combined with TV/ TGV regularization as well
as the weighted L2 − Lp approaches.

Remark 8.2. In the above considerations we have assumed small displacement er-
rors. Studying the example in Fig. 8.28 in detail, shows that sampling errors are
dominant in the edge regions of images. We distinguish between small displace-
ments, which lead to noisy contours in the image, and large displacements, by which
gray values are shifted into different regions of the image. In the latter case, the
displacement error leads to isolated noise peaks. We observe that even in this case,
despite the violation of our assumption our approach provides satisfactory results,
cf. Fig. 8.30.

Vector-Valued Data (m > 1)

In the case of vector-valued data, we face the problem that no analytical solution of
the pseudo-inverse is available. In order to avoid the numerical computation of the
pseudo–inverse, we additionally regularize the possibly singular matrix (∇u)⊤∇u by
the regular, symmetric, and strictly positive definite matrix ((∇u)⊤∇u + εI) with
some ε > 0. Therefore, in the sequel, we consider minimizing of the regularized
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(a) Original image (b) Input Data

(c) ROF (d) L2 − TGV

(e) weighted L2 − L1 (f) weighted L2 − L2

(g) NCQ (h) NCBV

Figure 8.30: Results for smoothing the cards with displacement errors. The weighted
L2 − L1 approach provides significantly sharper results than the competing ap-
proaches.
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(a) Original image (b) Input Data

(c) ROF (d) L2 − TGV

(e) weighted L2 − L1 (f) weighted L2 − L2

(g) NCQ (h) NCBV

Figure 8.31: Results for smoothing the cameraman with displacement errors. In
contrast to the standard approaches with L2 data term and TV/TGV regularization,
NCQ and NCBV are able to remove the displacement errors. The NCBV approach
provides the result with the visually best quality.
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Method cards cameraman Lena peppers boat mountain
L2-TV 0.6184 0.7316 0.7788 0.7869 0.6628 0.7424
L2-TGV 0.6756 0.7498 0.8103 0.8253 0.6934 0.7686
weighted L2 − L1 0.7263 0.7576 0.8040 0.6889 0.6912 0.7594
weighted L2 − L2 0.7535 0.7522 0.7927 0.6253 0.5931 0.7417
NCBV 0.6916 0.7646 0.8132 0.8290 0.6972 0.7687
NCQ 0.7037 0.7401 0.7862 0.7976 0.6749 0.7473

Table 8.8: Displacement regularization. Quantitative comparison of L2 − TV
(ROF), L2−TGV, NCQ and NCBV for removing sampling point errors. We compare
the SSIM values of the four different methods after automatically retrieving approx-
imately optimal parameters as described in Section 8.1. The proposed approaches
clearly outperform the methods based on standard L2 data term in combination
with TV and TGV regularization.

functional

F ε
u(0)(u) :=

1

2

∫

Ω

(u− u(0))⊤
(
(∇u)⊤∇u+ ε Id

)−1
(u− u(0)) + ‖∇u‖pF dL. (8.24)

For this functional, the existence theory within the classical framework of the cal-
culus of variations [48, 49] due to the missing weak lower semi-continuity is not
applicable. Moreover, we face the problem that to retrieve a relaxed functional of
(8.24) an analytic formula for the quasi-convex envelope of

J → (u− u(0))⊤
(
J⊤J + ε Id

)−1
(u− u(0)) + ‖J‖pF (8.25)

is not at hand.
As a remedy, we propose to alter the problem by applying the concept of semi-

group theory as discussed in Section 5.3 to derive a gradient flow of the form (5.30).
Inserting

A(u) = (∇u⊤∇u+ ε Id)−1 (8.26)

into (5.30), we derive the PDE

∂tu = ((∇u)⊤∇u+ ε Id) ∇ ·
( ∇u
‖∇u‖F

)
(8.27)

with initial value u(0) = f and homogeneous Neumann boundary conditions. Please
note that in (8.27) for compactness of notation we omitted the dependence of u with
respect to time t.

We propose to use the PDE (8.27) to remove displacement errors in vector-valued
data such as color images. In the following we consider two examples.

The first one is an artificial test image with a color gradient, cf. Fig. 8.32 (a),
distorted by sampling errors as shown in Fig. 8.32 (b). Please note that in the
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(a) Original Data (b) Data with Displacement Er-
rors

(c) Result (T = 10) (d) Result (T = 100)

Figure 8.32: [Best viewed in color.] Removing displacement errors in color images
using PDE (8.27). We consider the artificial test image (a) distored by displace-
ment errors (b). The numerical solution to the PDE (8.27) provides a sequence of
smoother and smoother images. Here we depict the solution at times T = 10 (c) and
T = 100 (d). At the second instance of time, the displacement errors are completely
removed without any artifacts arising in the color gradient.
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(a) Data with JPEG Artifacts (b) Smoothed Data

Figure 8.33: [Best viewed in color.] Removing JPEG artifacts in color images using
PDE (8.27): (a) Image with JPEG artifacts. (b) Result of the proposed method
based on PDE (8.27). Our approach is able to properly remove these artifacts.

generation of our synthetic data, to be able to evaluate pixels which by the random
offset are shifted out of the given image domain, we extend the image by black color
outside Ω. By solving PDE (8.27) numerically, the proposed method produces a
sequence of images which become smoother over time. The solution at two instances
of time are depicted in Fig. 8.32 (c) and (d). At the second instance of time, the
displacement errors are completely removed. It can be observed that the proposed
methods does not produce any color artifacts in the color gradient.

In our second example, we consider a test image with JPEG compression arti-
facts. The motivation behind this is, that such artifacts appear as blocks, in which
constant colors are used, where slopes occur in the original image. This actually
means that the original color at a certain pixel location is replaced by a color from a
near by position. Thus, we can interpret these artifacts as sampling errors. Fig. 8.33
(a) shows a close-up of a real digital photograph with such JPEG artifacts produced
by the standard compression of the camera software. It turns our that the proposed
methods is well suited for removing such artifacts, as we observe from the results
depicted in Fig. 8.33 (b).

8.3 Denoising Time-of-Flight Data

8.3.1 Introduction

Time-of-Flight (ToF) cameras have been designed to capture the depth of a scene
with respect to the camera position. The principle of a time-of-Flight camera is
briefly summarized as follows:
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(a) scene overview (b) ToF intensity (c) ToF depth

✷
�✷
✁

✶
�✂
✁

(d)

(e) scene overview (f) ToF intensity (g) ToF depth

✄
☎✆
✝
✞

✵
☎✄
✝
✞

(h)

Figure 8.34: Test data sets HCI box (top) and shapes (bottom). White rectangles
indicate regions further investigated in the experimental section.
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• The scene is illuminated by an infra-red light source. The emitted IR signal
is amplitude modulated.

• Ideally, the light of source is scattered once at the surface of an object and
than captured by the camera sensor.

• The camera sensor is able to determine intensity, amplitude and phase of the
incoming signal. This is typically done based on of four sequential recordings,
denoted by Ii : Ω → R, i = 1, . . . , 4. We refer to these recordings as the raw
data.

• By determining the correlation to the emitted signal, a phase shift can be
estimated. Formulated in terms of (Ii)i, this phase shift is given as

φ(x) = arctan

(
I4(x)− I2(x)

I3(x)− I1(x)

)
. (8.28)

The phase shift φ is proportional to travel time of the light from the emitting
source to the sensor, and thus, due to the constant speed of light, (up to some
systematic and statistical errors) proportional to the radial scene depth. i.e.
the distance of each object to the camera position.

• Besides the phase, also the intensity

I(x) = 1
4

4∑

j=1

Ij(x) (8.29)

and the amplitude

A(x) = 1
2

√
(I1(x)− I3(x))2 + (I4(x)− I2(x))2 (8.30)

of the IR signal are determined. These data can also be exploited when further
processing the depth data, as we will see below.

By repeating the above steps, ToF cameras provide sequences of depth maps with
a constant frame rate. For details on the technology of time-of-flight we refer to the
Ph.D. thesis by Mirko Schmidt [150] and the survey chapter in [92].

ToF depth imaging is prone to several error sources, including systematic errors
such as multi-scattering, phase-dependent error (wiggling), internal scattering as
well as the statistical error of photon counting by the sensor (noise) [146, 150].

The noise can be approximately described by the following model: Assuming
that the raw data are affected by independent and identically distributed Gaussian
noise with variance σ, it can be shown that the distribution of the estimated depth
is approximately Gaussian with a variance varying locally, depending on the signals
amplitude A(x):

φ(x) ∼ N
(
0,

σ2

2A2(x)

)
. (8.31)
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In contrast, the noise in the intensity and amplitude data is still i.i.d., cf. [58]:

I(x) ∼ N (0,
σ2

2
), A(x) ∼ N (0,

σ2

4
). (8.32)

Due to the strong noise (cf. Fig. 8.34, right column) it is inevitable to apply a denois-
ing technique before further processing the depth data. In [102] we have surveyed
state-of-the-art techniques for denoising ToF data and investigated different strate-
gies from smoothing the raw data to smoothing the final output. It turned out that
a favorable strategy is to apply a variational approach with adaptive second-order
total variation regularization at the very end of the depth acquisition pipeline. For
the specific task of denoising ToF data, TV regularization has several advantages:

1. The noise model can easily be incorporated into the data term by introducing
a weighting factor.

2. Second-order TV favors piecewise smooth solutions with jumps and thus is
suitable for the reconstruction of depth maps.

3. There is only little texture contained in the depth data, thus the known lack
of TV to handle textures is less relevant.

4. Reducing the regularization strength at edges, as it is done in adaptive regular-
ization approaches, prevents a loss of contrast, which other methods including
standard TV show.

5. When determining the adaptivity for the TV regularizer, we can make use of
the fact that not only depth information, but also the intensity at a far lower
noise level is available.

We will show in the experimental section, that the approach presented here produces
better results than applying state-of-the-art methods (off the shelf) on depth data
only.

8.3.2 Approach

Edge Detection

In order to apply second-order anisotropic total variation to denoise ToF data, we
first have to determine edge locations and edge positions. Here, we use both the
intensity and the depth data, to which we apply an edge detection algorithm as
follows.

The core of our edge detection is based on the structure tensor approach proposed
by Köthe [87], combined with Canny’s edge detector and hysteresis thresholding [33].

1. As suggested by Köthe, the sampling frequency for the image gradient is dou-
bled by evaluating finite differences at every full and half pixel position.
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Figure 8.35: Geometry of camera and light paths.

2. The structure tensor (cf. Section 4.6) is calculated from the image gradient.

3. The structure tensor is locally averaged using an hour glass shaped Gaussian.
The eigenvector to the larger eigenvalue provides approximate edge normals.

4. The eigenvalues and eigenvectors serve as input for Canny’s algorithm.

5. A hysteresis thresholding with parameters τlow and τhigh is performed.

6. In order to separate adjacent edges, we look for discontinuities of the edge
normals. If the scalar product of two adjacent edge normal exceeds a given
threshold τs, the corresponding edge is split up into two parts. We will see
that for post-processing of the edge data, such a splitting is eligible.

7. Edges, which are shorter than a given threshold, are removed.

When applying the above edge detection approach to the depth data only, due to
the strong noise it is inevitable to have false positive results.

As a remedy, we consider the following strategy. The above procedure is applied
independently to both the intensity and depth data as follows.

1. High-Confident Edges: We apply the detection procedure with large thresh-
olds τhigh and τlow to the depth data to find strong edges. Due to the high
thresholds we expect very rare false positives.

2. Intensity Edges: We apply the above detection procedure to the intensity
image. Since the noise of the intensity image is not as strong as in the depth
data, we expect less false positives due to noise. There is, however, the issues
that an intensity edge might be caused by a varying reflectance of the objects
surface, and not by the overlapping of two different objects. We refer to
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such edges as texture edges. Another important source for intensity edges are
shadows. To eliminate both kinds of intensity edges, we apply appropriate
post-processing steps as detailed in the next paragraphs.

3. Low-Confident Edges: The detection procedure is again applied to the
depth data, but with smaller thresholds τlow and τhigh as in the first step. As
a result, we can expect to find more edges as before with a higher risk of false
positive detections. We use this edge set in the subsequent step to detect and
remove shadow edges in the intensity image.

Since ToF cameras rely on active illumination of the scene and the light sources
are fixed parts of the camera, the geometry of lightening of a ToF camera is known
in advance. However, it depends on the camera model. Typical light sources are
single LEDs, LED clusters or LED rings. In this section, we make use of the known
geometry to remove shadow edges detected in the intensity data. We restrict our
approach to the geometry of the PMD Cam Cube 3, where the scene is lighted by
two LED arrays of size 42mm × 43mm mounted at the left and right side of the
camera sensor. With the scene typically being in a distance of a few meters, we may
treat the two LED arrays as two point sources. We remark that our approach can
be easily adapted for other camera models.

The strategy to detect shadow edges is the following: Since the light sources
are located to the left and right of the sensor, we restrict our approach to non-
horizontal edges. Considering an edge detected in the intensity image as a candidate
for a shadow edge, we have to identify a depth edge causing this shadow. We do
this separately for each light source. The search can be narrowed down due to the
following considerations:

• the depth edge has to lie in close vicinity of the shadow,

• the depth edge should be parallel to the intensity edge, and

• after fixing the light source (left/right) producing the shadow, the depth edge
has to lie either to the right or to the left side of the shadow, otherwise it is
occluded in the camera view.

We search for such depth edge in the third data set containing a higher number of
edges than the first set. For a candidate pair of depth and shadow edge, we check if
the corresponding 3D points share the same optical ray from the light source. For
simplicity, let us assume for the moment that we search for a vertical shadow along
the line y = 0. We consider a shadow casting edge at position (x1, 0) in the image
plane and the position of the shadow at (x2, 0). The corresponding 3D points are
Xi := (dixi, 0, di), i = 1, 2 (cf. Fig. 8.35), where di is the Cartesian depth of the two
points. Note that we can retrieve the Cartesian depth from the ToF data providing
the radial depth of the scene. From the 3D points, the angle αi of each optical ray
to the light source is given by

tan(αi) =
di

a+ dixi

, i = 1, 2, (8.33)
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8.3. DENOISING TIME-OF-FLIGHT DATA

where a is the horizontal distance between camera sensor and light source. For
non-vertical edges, due to the fact that relative to typical scene depths, the distance
between light source and camera sensor is small, we assume (8.33) to hold approx-
imately. If both angles αi are approximately equal, we regard the found pair of
edges as shadow casting edge and corresponding shadow. In this case, we remove
the found shadow edge from the set of intensity edges. Moreover, the presence of
this shadow asserts that the casting edge (from edge set 3) is indeed a depth edge.
We therefore add this edge to the first set of depth edges.

As mentioned before, the set of intensity edges may contain edges which are
caused by changing surface properties of the objects in the scene (texture edges).
We can detect such texture edges by comparing the average depth on both sides of
the edge. To this end, we calculate for each intensity edge

ddiff =
1

|E|N
∑

x∈E

N∑

j=1

|d(x+ jν(x))− d(x− jν(x))|, (8.34)

where ν is the known edge normal, and discard intensity edges if ddiff lies below a
given threshold.

This ansatz might fail at depth ridges coinciding with intensity edges, where the
depth varies on both sides of the edge, leading to a higher value of ddiff.

If such ridges should be discarded as well, one can in addition calculate the
average absolute value of the depth gradient and threshold its difference

graddiff =
1

|E|N
∑

x∈E

N∑

j=1

∣∣|∇d(x+ jν(x))| − |∇d(x− jν(x))|
∣∣. (8.35)

We remark that for denoising with adaptive TV it might be advantageous to adapt
the regularization also to depth ridges in order to avoid a flattening of these ridges.
We will study such an approach in future work.

The final step of the edge detection process consists in merging the set of high-
confident edges with the intensity edges. Note that the set of high-confident edges
includes also low-confident depth edges of the third set, which where found as shadow
casing edges during the shadow removal process. To sum up, the final detection
result contains edges if they are either

• high-confident depth edges,

• image edges excluding texture and shadow edges,

• shadow casting edges,

where for each edge its location χe(x) and orientation ve(x) (edge normal) are stored.
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Denoising with Anisotropic Second-Order TV

We use a variational approach with anisotropic second-order TV regularization,
where we incorporate the edge information found in the detection phase.

We consider a weighted data term of the form

S(u) :=
∫

Ω

w(x)(u− f)2 dx, (8.36)

where f are the data to be denoised and the weighting function w(x) : Ω → R+

is chosen to take into account the locally varying variance of the noise. Assuming
that f is affected by Gaussian noise zero mean and standard deviation σ(x), the
weighting term should be chosen as w(x) ∝ 1

σ(x)2
. In the case of ToF depth data,

where we assume the variance to depend on the amplitude A(x), cf. (8.32), this leads
to w(x) ∝ A2(x). It turns out, that in practice it is suitable to bound the weighting
term from above. From our experiments we found that the choice

w(x) := min
{
Ã2(x), 1

}
, Ã = C

A(x)−minx A(x)

maxx A(x)−minx A(x)
(8.37)

with some C > 0 performs well for our approach.

Remark 8.3. Introducing the above weighting of the data term, we assume that
besides the depth also the amplitude signal is provided by the camera. For the PMD
cam cube, which we used to record our test data, the amplitude can be calculated
from the accessible raw data Ii. In case that a ToF camera does not provide access
to either amplitude or raw data, the intensity image might serve as an approximation
for the amplitude data.

The regularization term R(u) for our approach is chosen to be the one from
Example 4.28. Recall that this TV regularization is anisotropic in the first- and
adaptive in the second-order, as it reduces the first-order regularization strength
in normal direction ve and the second-order regularization strength isotropically at
edges.

Please note that it is easily checked that, if w(x) in (8.36) is bounded from below
by a positive constant, Assumption 4.10 is satisfied. Consequently, Theorem 4.11
ensures existence of a minimizer of

F(u) := S(u) +R(u) (8.38)

for S and R defined as above.

Finally, we remark that adapting the ideas of slope detection (Section 4.6) for
denoising ToF data is planned as future work.
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(a) weighted TV (b) second-order TV (c) BM3D

(d) anisotr. second-order TV
(std. struct. tensor, data-
driven)

(e) anisotr. second-order TV
(std. struct. tensor, sol.-
driven)

(f) anisotr. second-order TV
(ToF dedicated edge detec-
tion)

Figure 8.36: Denosing ToF data. Comparison of different denoising approaches on
the HCI box data set. The proposed anisotropic second-order TV regularization (f)
based on the specialized edge detection process performs best concerning both issue
of edge sharpness and surface regularity.
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(a) weighted TV (b) second-order TV

(c) BM3D (d) anisotropic second-order TV
(std. struct. tensor, data-driven)

(e) anisotropic second-order TV
(std. struct. tensor, sol.-driven)

(f) anisotropic second-order TV
(ToF specialized edge detection)

Figure 8.37: Denosing ToF data. Close-ups of results in Fig. 8.36, showing piece-
wise affine regions with sharp edges. The TV approach based on the ToF specific
edge detection shows for most regions except for the edge of the lowest stair step
(top part of first close-up) the best performance concerning regularity of edges and
slopes.
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(a) weighted TV (b) second-order TV (c) BM3D

(d) anisotr. second-order TV
(std. struct. tensor, data-
driven)

(e) anisotr. second-order TV
(std. struct. tensor, sol.-
driven)

(f) anisotr. second-order TV
(ToF dedicated edge detec-
tion)

Figure 8.38: Denosing ToF data. Comparison of different ToF denoising approaches
on the shapes data set. The solution-driven and the ToF specialized anisotropic
second-order TV approach show the best results, while the other either show blur-
riness or stair-casing artifacts.
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8.3.3 Results

The edge detection step described above has be designed to optimize the detec-
tion results on ToF data sets. In [145] we compared this approach to other stan-
dard and state-of-the-art detection approaches to show its advantages. Since the
scope of this thesis lies on regularization, we focus here on the actual denoising
process and the influence of the choice of the regularizer on the result. To this end,
we compare the proposed approach to 1) standard first order TV with weighted
data term, 2) standard second-order TV with weighted data term, (3) the BM3D
denoising software, 4) data-driven and 5) solution-driven anisotropic second-order
TV based on the standard structure tensor (cf. Example. 4.28). For evaluation,
we use the two data sets HCI box (introduced in [119], available online at http:

//hci.iwr.uni-heidelberg.de//Benchmarks/document/hcibox) and shapes (in-
troduced in [145]) as depicted in Fig. 8.34. In each data set, two particular regions
containing piece-wise planar surfaces and edges are selected for close-ups (indicated
by white rectangles in Fig. 8.34). For the HCI box, these regions are the stair steps
in the upper part of the depth map and the ramp in the middle part. In the shapes
depth map, we focus on the wooden objects and the toy house. Moreover, the surface
of the table, which is expected to have a regular slope, is of interest.

The corresponding results for the denoising methods under considerations are
shown in Figs. 8.36 and 8.38, with close-ups of the selected regions shown in Figs. 8.37
and 8.39, respectively.

On the results of the individual methods we observe the following. Firstly, stan-
dard TV regularization shows the well-known stair-casing effect, in particular in
regions of strong noise. Besides this disadvantage, it is able to reconstruct sharp
edges, but without the sufficient regularity (smoothness).

Using isotropic second-order TV instead avoids the stair-casing effect, but at the
expense of less sharp edges.

The BM3D method, at least in its standard implementation, is not able to cope
with the varying noise level. Using a smoothing strength which is suitable for most
of the regions in the test images, artifacts remain in those regions with very high
noise level. Increasing, however, the smoothing level leads to an over-smoothing. We
remark that for the HCI box data set, the depth edges are sharply reconstructed,
while for the shapes data set, the edges at the toy house appear slightly blurred.

Concerning the data-driven anisotropic second-order TV approach, we observe
that despite a very strong pre-smoothing, it cannot cope with the high noise level.
Artifacts from the noise are generated by the anisotropy.

Compared to the data-driven approach, the solution driven approach does not
show these artifacts. However, it may produce artificial edges in the regions of high
noise level, as for example for the HCI box data, where some artificial plateaus are
reconstructed on the ramp. Besides this negative effect, the reconstruction of the
objects in the HCI box data shows a good quality. In particular, the edge of the
lowest step of the stair is reconstructed in a straight way.

Inspecting the results for the anisotropic second-order TV with edges determined
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by the specialized approach presented above, we observe both edges and slopes (e.g.
the ramp in the HCI box data set and the table surface in the shapes set) are recon-
structed in an accurate way. Objects with different depth are clearly distinguishable
(see e.g. 8.39 (f)). The only disadvantage of this approach is that the anisotropy in
some regions is guided by texture edges found in the intensity data. This occurs for
example at the lower part of the ramp. This effect, however, is less dominant than
artifacts in the compared approaches. Concerning the shapes data set, we observe
that the results of the solution-driven and the specialized approach are close-by.

Finally, we want to remark that a quantitative evaluation of the above methods
based on ground truth would be advisable. For the HCI box data set, there is
a virtual model available, from which the true depth data can be retrieved. The
real data of the HCI box, however, are affected not only by noise, but also from
various systematic errors such as artifacts from multi-path and flying pixels. These
systematic errors are dominant compared to the noise error. Since the methods
considered above only tackle the removal of noise, the results still contain these
systematic errors. The difference to ground truth depth is strongly governed by
these errors and cannot be used to measure the denoising quality. A remedy to this
problem would be to generate synthetic data by means of a ToF simulator, which
would allow to explicitly turn the noise component of the data on or off, while
keeping the other errors fixed.

8.4 Fusion of ToF and Stereo Sensors

To overcome the limitations of specific imaging systems, a common strategy is to
combine different types of imaging sensors. The individual outputs of the camera
systems then typically are merge in a post-processing step, also referred to as sensor
fusion. For ToF imaging an appropriate and commonly used approach is to use
stereo vision as a second system. The rational behind combining ToF and stereo is,
that ToF can provide useful information in regions, where the stereo cameras fail
due to missing texture, while stereo can produces better results in regions of low IR
reflectance. Thus, by combining both vision systems, we can exploit the individual
benefits of each system. For related work on fusion of ToF and stereo data we refer
to the survey [120].

In the following, we consider a variational approach with second-order anisotropic
TV regularization for fusing ToF and stereo data.

8.4.1 Camera Setup and Available Data

We consider a camera rig with two monochrome cameras (1312 × 1082 pixel) to-
gether with a time-of-flight camera (PMD Cam Cube 3, 200 x 200 pixel). It is
assumed that the stereo images together the low resolution depth map from the
ToF camera are recorded simultaneously. Since all cameras are fully calibrated, the
stereo images can be rectified and the depth data can be warped to the view of the
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(a) weighted TV (b) second-order TV

(c) BM3D (d) anisotropic second-order TV
(std. struct. tensor, data-driven)

(e) anisotropic second-order TV
(std. struct. tensor, sol.-driven)

(f) anisotropic second-order TV
(ToF dedicated edge detection)

Figure 8.39: Denosing ToF data. Close-ups of results in Fig. 8.38, showing the toy
house with two cuboids in front (left) and two other shaped blocks (left). The TV
approach using a ToF specific edge detection best reproduces the affine shape of the
scenes, with sharp edges and high contrast, which eases to distinguish the different
objects

Figure 8.40: Camera setup for fusion of Time-of-Flight and stereo.
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1. The accuracy of the ToF depth data depends strongly on the intensity of the
IR signal recorded by the camera sensor. To account for this fact, we consider
the normalized intensity CToF as a fidelity measure for ToF.

2. In stereo matching, disparities can only be estimated in regions where sufficient
texture is present. We use an indicator Ctexture for texture in the left stereo
image, obtained by clipping and normalizing the horizontal derivative ∂xI

L of
the image.

3. Finally, we consider occluded areas described by a binary map as Coccl, where
occlusion is indicated by zero values. This occlusion map is found from the
scene geometry using the ToF depth data.

Please note that all measures are determined with respect to the view of the left
stereo camera and with the same resolution. For illustration, we depict the three
fidelity measures for the statues data set in Fig. 8.42.

We now turn to the variational approach. We describe our approach in the
continuous setting. To this end, let now IL, IR, uToF : Ω → R, be defined on the
image domain Ω ⊂ R2. We have to determine a correspondence between the pixels
of image IL to the pixels of the image IR. We describe this correspondence by means
of a horizontal displacement field u : Ω→ R. We assume that a first approximation
u0 of u is available. Here, we use the upsampled ToF data uToF , while other kinds
of initialization are also feasible.

In order to refine u0, we again make use of both the stereo data and the ToF
depth map. As a consequence, we consider a variational approach with two data
terms Sstereo(u) and SToF(u). The objective function takes the general form

F(u) := Sstereo(u) + SToF(u) +R(u), (8.39)

where Sstereo(u) and SToF(u) are two data fidelity terms for the stereo and the ToF
input and R(u) is the regularization term. We discuss all three terms in detail
below.

In order to improve the initial displacement u0, we search for an update δu : Ω→
R, such that u = u0 + δu. This incremental update step is performed repeatedly to
obtain a sequence (uk)k of refined displacements. It turns out that the incremental
update is in particular crucial for the stereo data term, as we will see in the following
paragraphs. We adapt the notation accordingly and consider now a stereo data term
of the form Sstereo(uk, δ), where current iterate uk and update δu are independent
parameters. For the other data term as well as the regularization term, it suffices
to evaluate them directly on uk + δu, i.e. we use SToF(uk + δu) and R(uk + δu). To
conclude, we consider the sequence of optimization problems

δuk+1 := argmin
δu

F(uk, δu), k ≥ 0, (8.40)

where
F(uk, δu) := Sstereo(uk, δu) + SToF(uk + δu) +R(uk + δu), (8.41)
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and where we perform an update uk+1 := uk + δuk+1 after solving each problem
(8.40).

Now we turn to the choice of the individual data terms and the regularization
term, which we detail in the following paragraphs.

Stereo Data Term

The classical brightness constancy equation (BCE) [31] for stereo/optical flow, which
we assume to be valid in our application, reads

IL(x, y) = IR(x+ u(x, y), y). (8.42)

Recall that we aim to recover u by a sequence of (uk)k, where for each uk we search
for an update uk + δu. Inserting u = uk + δu in (8.42), we derive

IL(x, y) = IR(x+ uk(x, y) + δu(x, y), y). (8.43)

Linearizing IR(x, y) by Taylor expansion around x+ uk(x, y), we find

IR(x+ uk(x, y) + δu(x, y), y) ≈ IR(x+ uk(x, y)) + δu(x, y)
∂

∂x
IR(x+ uk(x, y), y),

(8.44)
which is justified for small δu [131]. Inserting (8.44) into (8.43) gives the linearized
brightness constancy equation

IL(x, y) ≈ IR(x+ uk(x, y), y) + δu(x, y)
∂

∂x
IR(x+ uk(x, y), y). (8.45)

The first fidelity term Sstereo in (8.41) is to penalize derivations from (8.45). In
order to be robust against outliers, we use the L1-norm, i.e.

∫

Ω

∣∣∣∣I
R(x+ uk(x, y), y) + δu(x, y)

∂

∂x
IR(x+ uk(x, y), y)− IL(x, y)

∣∣∣∣ dx dy. (8.46)

Please note that the fidelity term is discriminative only in regions, where matchable
textures are present. We exploit the fidelity measure Ctexture to identify regions with
sufficiently matchable textures. Moreover, the stereo fidelity term is not reasonable,
if occlusions occur. Fidelity measure Coccl indicates areas with occlusions. To respect
both issues, consider a weighting function w1(x, y) := Ctexture(x, y) · Coccl(x, y) for
the stereo data term. Combining (8.46) with this weighting function, we end up
with the data term

Sstereo(uk, δu) :=∫

Ω

w1(x, y)
∣∣(∂xIR(x+ uk(x, y), y) δu+ IR(x+ uk(x, y), y)− IL(x, y)

∣∣ dx dy.
(8.47)
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ToF Data Term

As already mentioned before, we assume that the ToF data have been upsampled to
the resolution of the stereo images, warped to match to the view of the left camera
and transfered into disparities uToF.

We can make use of the ToF data in regions where no sufficiently matchable
structures for stereo are available, taking into account the fidelity CToF for ToF. To
this end, we define a second weighting term w2 by

w2(x, y) := (1− w1(x, y)) · CToF(x, y), (8.48)

where w1 is the weighting function for the stereo data as defined above. The second
fidelity term SToF in (8.41) penalizes the deviation of a given u = uk + δu from
the data uTOF . Again, to be robust against possible outliers, we use the L1-norm,
weighted with the above function w2(x):

SToF(uk + δu) :=

∫

Ω

w2(x, y)
∣∣uk(x, y) + δu(x, y)− uTOF (x, y)

∣∣ dx dy. (8.49)

Remark 8.4. As already mentioned, ToF data suffer from several systematic errors.
By fusion ToF and stereo data, we are able to cope with most of them. There
is, however, one systematic error which strongly affects some regions in the image
domain, namely the multi-path error. The multi-path error is a systematic error,
where depth is incorrectly estimated due to multiple reflections of the IR signal at
different objects, such that the optical path is prolonged (cf. [92] for details), and
consequently the depth is falsified by a large shift. This error does not affect only
isolated pixels, but larger regions in the image. Due to the high impact of this error
on the depth data, the ToF data should be discarded in these regions, which could be
done by adapting the weight w2. However, we up to now have not studied a criterion
to automatically detect regions with multi-path errors.

Regularization Term

As for the ToF data term, for regularization it makes sense to consider the full
displacement field u = uk + δu instead of penalizing δu. Thus, in the following we
specify R(u) = R(uk + δu).

For the task of fusing ToF and stereo data we choose the same regularizer
R(u) as for denoising ToF data (cf. Section 8.3), namely second-order TV, which
is anisotropic in the first order term and adaptive in the regularization strength for
the second-order term. Different to the approach for ToF denoising, we gather the
required edge information from the left stereo image instead of the ToF intensity
and depth.

To this end, let χe : Ω → [0, 1] be an edge indicator function and ve(x) : Ω →
S1 be a vector field providing the edge normals. In our application, we use edge
data obtained by a similar approach as described in Section 8.3.2 (structure tensor
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combined with Canny’s edge detection approach), but applied on the left stereo
image.

Based on the two functions χe and ve, we define R(u) as described in Exam-
ple 4.26 in Section 4.7.

Please note that this regularization term differs from the one proposed in [118],
where adaptivity of second-order TV was achieved by adapting the discrete differ-
ential operator near edge structures to avoid smoothing across edges. We compare
both regularizers in the experimental section below.

Numerical Aspects

Concerning numerical treatment of the variational problem (8.40), two issues are to
be mentioned.

Firstly, we remark that due to the dense and quite accurate initialization by
the local approach a classical coarse-to-fine strategy can be omitted. Instead, the
update uk → uk + δuk is performed iteratively for several steps on the finest scale.

Secondly, in order to ease the numerical treatment, the objective function is
modified by introducing a variable splitting, as it is standard in the literature, see
e.g. [45, 173, 182]. Introducing auxiliary variables ũ and u and penalizing their
difference to u = uk + δu with additional quadratic cost terms, we derive

min
δu,ũ,u

Sstereo(uk, δu) + SToF(u) +R(ũ) + 1
2λ1
‖uk + δu− ũ‖22 + 1

2λ2
‖u− ũ‖2 (8.50)

as an approximation of problem (8.40). With λ1, λ2 > 0 tending to zero, both prob-
lems become equivalent. In practice, however, we use fixed small values λ1 = λ2 =
0.01. Typically (8.50) is minimized by alternately solving the three subproblems

min
δu

Sstereo(uk, δu) + 1
2λ1
‖uk + δu− ũ‖22, (8.51)

min
u

SToF(u) + 1
2λ2
‖u− ũ‖22, (8.52)

min
ũ

R(ũ) + 1
2λ1
‖ũ− uk + δu‖22 + 1

2λ2
‖ũ− u‖22. (8.53)

For the subproblems (8.51) and (8.52), closed forms can be provided using the
pseudo-inverse of ( ∂

∂x
IR(x+ uk(x), y) for the first and utilizing soft thresholding for

the second one. We solve subproblem (8.53) by applying the primal-dual algorithm
proposed by Chambolle & Pock [36], see Section 7.1.

8.4.3 Experiments

In this experimental section we follow two aims. Firstly, we demonstrate the compet-
itiveness of the approach presented above to two state-of-the-art methods, namely
the local approach in [118] and the semi-global matching (SGM) proposed by Hirsch-
müller [75]. In addition, we compare to the closely related global approach from
[118], in which second-order adaptive TV based on edge masks is used. Secondly,
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(a) (b)

(c) (d)

Figure 8.43: [Best viewed in color.] Comparison of different approaches: (a) SGM
stereo [75], (b) local method from [118], (c) variational approach from [118] and
(d) the proposed approach. We observe that the global approaches, due to the
underlying regularization, provide much smoother and more homogeneous results
that SGM and the local methods. This comes with the cost of larger computational
effort.
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(a) variational approach from [118] (b) described method

Figure 8.44: 3D surface of the statues scene reconstructed from the smoothed depth
map. Differences between the method [118] and the one describe above are hardly
visible (showing the need for a quantitative comparison).

(a) variational approach from [118] (b) described method

Figure 8.45: Close-up of the 3D surface of the right statue of Virgin Maria in
Fig. 8.44. Only slight differences between the method [118] and the one describe
above are visible, e.g. the shape of the head of Maria.
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we investigate the influence of the choice of regularizer on the quality of the recon-
struction. We utilize two different data sets, the statues data set (cf. Fig. 8.41) and
the HCI box 1 (cf. Fig. 8.46), which already has been considered in Section 8.3 for
the task of denoising ToF data.

The results depicted in Fig. 8.43 give an impression on how the variational meth-
ods, the one proposed in [118] and the one proposed above, compare to the local
and the semi-global method. Due to the fact, that variational methods provide a
global minimum and due to the smoothing property of the regularizer, the results of
the latter are much more regular than those of the local approach and SGM. Com-
paring our previous approach from [118] with the one proposed above, only minor
differences show up in the disparity maps as well as in the back-projected 3D data
(see Figs. 8.44 and 8.45), respectively.

Evaluating the different methods on the second data set, the HCI box, see
Fig. 8.47, we come to the same conclusion. The results of the TV-based varia-
tional methods are more regular than those of the simple upsampling, local method
and SGM, while difference inbetween this class are noticeable only after close in-
spection. Main differences are occurring at the ramp, the edge of the lowest stair
step, the border between side walls and backside of the box and the polystyrene
objects.

Obviously the difference between the variational approaches are too small to
compare/rank them just based on visual inspection. Instead, we resort to a quanti-
tative evaluation on the second data set, the HCI box, for which ground truth data
is available. We recall that, when we considered the task of denoising ToF data
in Section 8.3, we refrained of using the ground truth data for quantitative evalu-
ation because strong systematic errors are present, which were not removed by the
denoising approaches. Here, however, the situation is different. By complementing
the ToF camera with a stereo imaging system, we are able to cope with various
errors in the ToF data except for the already mentioned the multi-path error (cf.
Remark 8.4). After excluding regions affected by this multi-path error, which for
the HCI box are mainly the right and bottom inner wall, the ground truth data are
suitable to evaluate our results.

Table 8.9 shows the error to the ground truth data for various methods including
simple upsampling of the ToF data, the local fusion approach from [118], semi-global
matching [75], a variational approach applied to the ToF data only (i.e. using only
the data term SToF) as well as variational approach with the coupled ToF and stereo
terms using several variants of TV regularization. The quantitative evaluation shows
that the variational fusion approaches produce a considerably smaller error than the
competing methods. Concerning the kind of regularization used, one observation is
that both the steps of introducing adaptivity and of introducing second-order, lead
to a decrease of the error. Finally, this quantitative comparison shows that the
proposed approach with anisotropic second-order TV provides the best result.

1available online at http://hci.iwr.uni-heidelberg.de//Benchmarks/document/hcibox
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(a) ground truth (b) ToF upsampling (c) SGM[75]

(d) local fusion[118] (e) standard TV (f) 1st order anisotr. TV

(g) 2nd order TV (h) 2nd order weighted
TV[118]

(i) 2nd order anisotr. TV

Figure 8.47: Reconstructed disparities for the HCI box data set. Different state-of-
the-art approaches and a variational approach with different regularizers are visually
compared to ground truth (lop left). The variational approaches using adaptive
second-order TV provide the best results. For a quantitative comparison, we refer
to Table 8.9.
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8.5 Upsampling of Color Images

8.5.1 Problem Description

In this section, we consider the task of image upsampling, also referred to as zooming
in. The problem statement is as follows. We assume an equi-distant two-dimensional
grid with nodes xi,j ⊂ R2 and indices i = 1, . . . , Nx and j = 1, . . . , Ny, which covers
a rectangular image domain Ω ⊂ R2. Assigned to each grid node xi,j we consider
some discrete image data zm,i,j, m = 1, . . . ,M , whereM denotes the number of color
channels of the image. The aim is to determine a vector valued function u : Ω→ RM ,
u(x) = (u1(x), . . . , um(x))

⊤, which has a certain regularity and interpolates the
discrete data zm,i,j. In a mathematically strict sense, this means that um(xi,j) =
zm,i,j for each (m, i, j). We will, however consider a slightly generalized concept of
interpolation constraints, which acknowledges the fact that camera sensor perform
a certain local averaging of the recorded image. This concept will be described in
detail in the next section.

We remark that our approach can be easily adapted to the general case of image
interpolation, where the domain Ω, on which the image is to be interpolated and
the pixel grid of the input image might not be congruent. The latter for example is
the case when an image has to be rotated by an arbitrary angle and where the color
values of the at the rotated pixel grid are determined by interpolation. Moreover,
our restriction to two-dimensional data is only for the simplicity of notation. An
adaptation to higher-dimensional data is straightforward.

8.5.2 Interpolation Constraints

Let

Ω :=

(
1

2
, Nx +

1

2

)
×
(
1

2
, Ny +

1

2

)
, (8.54)

where Nx, Ny ∈ N. The domain is partitioned into cells (’pixels’)

Qi,j :=

(
i− 1

2
, i+

1

2

)
×
(
j − 1

2
, j +

1

2

)
(8.55)

for indices i = 1, . . . , Nx and j = 1, . . . , Ny. By (xi,j, yi,j) we denote the center of
the cell Qi,j.

Let z ∈ RM×Nx×Ny denote the discrete data of a given image, where (i, j), i ∈
{1, . . . , Nx}, j ∈ {1, . . . , Ny} denotes the pixel index, and m ∈ {1, . . . ,M} denotes
the channel index. We assume that the data u0 have been sampled from an (un-
known) function utrue : Ω → RM . We denote the Cartesian product of the indices
(i, j,m) by I.

The task is to find a function u : Ω→ RM which satisfies interpolation constraints
based on the discrete data z. Interpolation in the classical sense is achieved if u
fulfills um(xi,j, yi,j) = zm,i,j.
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Besides the classical interpolation constraint, we consider an alternative concept
for image interpolation proposed by [70, 111], which accounts for the fact that the
cells of an image sensor have a certain extend, so that the intensity is averaged over
the cell area. This concept can be briefly characterized as follows. Let G be a kernel
function defined on R2 and compactly supported in [−1

2
, 1
2
]2. We consider the convo-

lution of G with some function u representing an arbitrary image. This convolution
models the integration process on the sensor. We denote this convolution, which is
performed channel-wise, by G ∗ u. Sampling the resulting function G ∗ u at pixel
positions (i, j) results in a discrete data set Z := (zm,i,j)m,i,j with

zm,i,j := (G ∗ um)(xi,j, yi,j), for (i, j,m) ∈ I. (8.56)

Examples for kernel functions typically used in the literature are listed in [139]. The
case of classical interpolation is retrieved by setting

G(x, y) = δ(x)δ(y), (8.57)

where δ(x) is the delta distribution. We rewrite (8.56) as follows: Let

Gi,j := G(· − (xi,j, yi,j)), (8.58)

then for each (i, j,m) ∈ I
zm,i,j = 〈Gi,j, um〉L2(Ω) , (8.59)

where

〈u, v〉L2(Ω) =

∫

Ω

u · v (8.60)

is the L2 inner product.
We say that a function u : Ω→ RM , u = (u1, . . . , uM)⊤ satisfies the interpolation

constraints for some discrete data Z = (zm,i,j), if

〈Gi,j, um〉L2(Ω) = zm,i,j. (8.61)

The set of functions satisfying the interpolation constraints for data Z is denoted
by UZ,G.

8.5.3 Related work

Since the problem of image interpolation can be considered one of the fundamental
tasks in image processing, it has been intensively studied in the literature. For a
detailed insight into this topic, we refer to the two surveys [113, 163], which cover
the topic approximately up to the year 2000. For more recent work, we refer to the
papers [41, 79, 83, 88] and the discussion of related work therein.

In the following, we will derive an approach using partial differential equations
(PDE) to solve the task of image processing. PDE based methods have also been
focus of previous work, see e.g. [19, 139, 140, 166]. The difference between the
approaches in [139, 140, 166] and ours are the particular PDEs used for filtering:
[139, 140, 166] use anisotropic diffusion, whereas we will utilize a PDE introduced
in Section 5.3, which generalizes the mean curvature flow (MCF).
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8.5.4 Approach

The simplest model one can think of for image interpolation is the nearest neighbor
interpolation, where the color of each node of the high resolution grid is set to the
color of the nearest node of the low resolution grid, as considered in the following
example.

Example 8.5. We consider for G the two-dimensional δ distribution, i.e.,

G(x, y) = δ(x)δ(y). (8.62)

Then zm,i,j = um((xi,j, yi,j)). The component-wise nearest neighbor interpolation
provides a function u0 : Ω→ RM , such that

u0
m|Qi,j

= zm,i,j, (i, j,m) ∈ I (8.63)

is piece-wise constant on each cell Qi,j.
We can interpret the interpolation error to the true function utrue as a displace-

ment error as introduced in Section 8.2. Recall that we model a displacement error
in terms of a displacement field Φ : Ω→ Ω, such that a distorted function u0(x, y) is
derived from the original function u by u0(x, y) = u(φ(x, y)) (cf. (8.8)). Considering
the displacement field

φ(x, y)|Qi,j
:= (xi,j, yi,j), (8.64)

we find that u0 = u ◦ φ is satisfied in the case of nearest neighbor interpolation. ⋄
The above example motivates the following approach for interpolating images.

1. Perform an initialization step, where a function u0 ∈ UZ,G satisfying the inter-
polation constraints is determined by some basic interpolation approach, e.g.
nearest neighbor interpolation or interpolation by cubic splines.

2. Interpret the difference between u0 and the original function utrue as a dis-
placement error.

3. Adapt the evolution equation (8.27), which is motivated for smoothing images
with displacement errors, so that the solution u(t) for initial value u(0) = u0 ∈
UZ,G stays in the set UZ,G.

In the remainder of this section we show the adaptation to guarantee u(t) ∈ UZ,G.
Now let u0 ∈ UZ,G be arbitrary. The nearest neighbor interpolation in Example

8.5 motivates the assumption that, for a sampled function u, there exists φ such that
u0 = u ◦ φ. Consequently, we can interpret u0 as a function with sampling errors.
Recalling the approach of displacement regularization presented in Section 8.2 we
consider the functional (8.24) restricted to the set UZ,G in order to reconstruct u
from given data u0. In turn, we restrict the flow equation (8.27) to UZ,G:

∂tu = PU0,G

(
(∇u⊤∇u+ ε Id)∇ ·

( ∇u
‖∇u‖2

))
, (8.65)
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where

PU0,G
(v) := v − ‖G‖−2

L2(R2)

Nx∑

i=1

Ny∑

j=1

〈Gi,j, v〉L2(Ω) Gi,j (8.66)

is applied on each component separately. Please note that the assumption u0 ∈ UZ,G
together with ∂tu ∈ U0,G asserts that the solution u(t) stays in UZ,G for all t ≥ 0.

Since the PDE (8.65) comprises a projection, for a the numerical solution a
time-explicit scheme with sufficiently small step size ∆t is required.

(a) (b) (c)

Figure 8.48: Test images motocross (a), parrots (b) and house (c) (taken from
the Kodak image collection, see e.g. http://r0k.us/graphics/kodak/). Each test
image is available in a low and a high resolution version with a factor of four between
both resolution. The red boxes in the first two images indicate regions, which will
be used to qualitatively evaluate the proposed approach, see Figs. 8.49 to 8.51.

8.5.5 Experiments

We compare our method, which numerically solves (8.65), to two standard interpo-
lation methods, namely nearest neighbor and cubic interpolation, as well as to the
state-of-the-art interpolation methods proposed by Tschumperlé & Deriche [167]
and by Roussos & Maragos [140]. The method of Tschumperlé & Deriche is im-
plemented in the GREYCstoration software (see http://cimg.sourceforge.net/

greycstoration/), test results for the method of Roussos & Maragos are available
from the web page http://cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res/.

In our method, the kernel function has to be chosen appropriately. We use

G(x, y) :=
1∫

[−1/2,1/2]2
gσ(x, y) dx dy

χ[−1/2,1/2]2 gσ(x, y), (8.67)

where gσ is the two-dimensional isotropic Gaussian kernel with standard deviation
σ.

The initial data u0 are obtained from a sinc-interpolation satisfying the interpo-
lation constraints introduced in Section 8.5.4.
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(a) original high resolution image (b) nearest neighbor interpolation

(c) cubic interpolation (d) GREYCstoration [167]

(e) method proposed by Roussos
et. al [140]

(f) proposed interpolation

Figure 8.49: [Best viewed in color.] Detail of the first test image after upsampling
by a factor of four using standard and state-of-the-art methods. As can be expected,
the nearest neighbor interpolation produces blocky results with high contrast. Cubic
interpolation as well as GREYCstoration [167] produce blurry results. The method
by Roussos et al. [140] and the proposed method provide the best results. Differences
between the latter are merely visible on this test image, but will be discussed based
on close-ups of the second test image parrots, cf. Figures 8.50 and 8.51.
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(a) orig. high res. im-
age

(b) GREYCstoration (c) Roussos’ method (d) proposed

Figure 8.50: [Best viewed in color.] Top row: detail of an edge in the original
high resolution image (a) and interpolated images, using GREYCstoration with
interpolation constraints (b), Roussos’ method (c), and the proposed method (d).
Bottom row: results of subsequently applying the Sobel operator to the interpolated
images. The proposed method provides the sharpest and most regular reconstruction
of the edge.
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(a) original high res. image (b) GREYCstoration

(c) roussos’ method (d) proposed

Figure 8.51: [Best viewed in color.] A texture detail of the original (a) and inter-
polated images using GREYCstoration (b), Roussos’ method (c) and the proposed
method (d). While GREYCstoration produces a blurry result, Roussos’ method
and the proposed approach provide satisfactory resuts. Differences can be observed
at the black and white stripes and the parrots eye. The proposed methods recon-
structs the striped region less smooth than Roussos’ method, which on the other
hand seems to enhance one specific orientation, that is the one of the three longer
black stripes.
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For evaluating the different methods, we use the three test images shown in
Fig. 8.48. For each image, a low and a high resolution version, denoted by u0

and utrue respectively, are available, where the low resolution image is obtained
from the high resolution image via low-pass filtering (convolution with a bi-cubic
spline) and down-sampling by a factor of four. The test images were obtained
from http://cvsp.cs.ntua.gr/~tassos/PDEinterp/ssvm07res/.

The methods mentioned above are used to upsample the low resolution image
by a factor of four.

Our method is applied with 100 time steps, ∆t = 0.03 , ε = 0.05 and σ2 = 20
for the first and 100 time steps, ∆t = 0.05, ε = 0.01 and σ2 = 20 for the second
test image, respectively. Except if noted otherwise, we use the PDE (8.65), which
corresponds to the choice p = 1 in (5.22).

For GREYCstoration (version 2.9) we use the option ’-resize’ together with the
aimed size of the high resolution image and parameters ’-anchor true’, ’-iter 3’ and
’-dt 10’. For the remaining parameters the default values are used. The results of
Roussos’ method were obtained from the web page mentioned above.

Before we turn to the results of the mentioned methods, we remark that present-
ing the results side by side in their full image size requires a downsampling, so that
differences between the individual approaches are no longer visible. We therefore
compare the methods based on specific image regions displayed in high resolution.

Let us consider the results of upsampling the first test image (see Fig. 8.48 (a)).
For this image we use one specific region of the image to highlight the differences
between the methods only details of the resulting images, see Fig. 8.49. The results
with nearest neighbor and cubic interpolation are shown in Fig. 8.49, (b) and (c), re-
spectively. Both results are unsatisfactory and confirm, what is well known from the
literature, that by nearest neighbor interpolation the upsampled images look blocky
and cubic interpolation produces blurry images. The result of GREYCstoration
with interpolation constraints (Fig. 8.49 (d)) also appears blurry, but compared to
cubic interpolation better reconstruct the edges in the image. The method proposed
by Roussos & Maragos as well as our method (see Fig. 8.49 (e) and (f)) produce
sharp and well reconstructed edges.

Concerning our proposed method, we like to remark that this method can be
slightly varied. This modification is based on the energy functional (5.22) from Sec-

tion 5.3 with the choice A(u) := ((∇u⊤∇u) 1
2 )† and the corresponding PDE (5.38).

With this modification, the results are slightly smoother than with PDE (8.27), but
the difference is merely visible. For this reason the results of the former are not
depicted here.

In order to further investigate the differences between the PDE based methods,
we zoom into two regions of the second test image (see Fig. 8.48 (b)), one region
containing an edge, see Fig. 8.50 and one region with texture, see Fig. 8.51.

Fig. 8.50 shows the edge region after applying the methods proposed by Tschum-
perlé with interpolation constraints (b), Roussos (c) and our method (d). For com-
parison we have plotted also the detail of the original image (a). One can see that
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by Tschumperlé’s method the edges appear blurry and irregular. This seems to be
an effect of the interpolation constraints, because when Tschumperlé’s method is
applied without constraints, strong anisotropic diffusion orthogonal to the image
gradient enhances the edges. By the method of Roussos the edge is reconstructed
in a sharp way, but overshoots appear. Our method is also able to reconstruct the
edge sharply but with little overshoots. Concerning the gray mark at the parrot’s
beak, we observe that Tschumperlé’s method reconstructs the shape of the mark
better than the other methods do.

The differences in the behavior of the methods can also be recognized when
applying the Sobel operator to the interpolated images, see Fig. 8.50, bottom row.
The thickness of the edges in the result of the Sobel operator indicates the blurriness
of the reconstructed edge. We see that the proposed method produces sharper
edges than the method by Roussos and more regular edges than the method by
Tschumperlé. The overshoots introduced by Roussos’ method can also be observed
in the outcome of the Sobel operator. They are far stronger than the overshoots
produced by our method.

Now we investigate the effect of the interpolation methods on textures. Fig. 8.51
(a) shows a textured region of the original image. The results of the methods pro-
posed by Tschumperlé (with interpolation constraints) and Roussos are given in
Fig. 8.51 (b) and (c), respectively. The result of the proposed method is shown
in Fig. 8.51 (d). One observes a certain blurriness in the results by Tschumperlé’s
method. As for the result before, we point out that incorporating the interpolation
constraints seems to have a strong effect on the result. When applying GREYC-
storation without imposing constraints, the results are much more influenced by
the anisotropic diffusion and the edges and the texture are accentuated. In the re-
sult of the interpolation method proposed by Roussos, we see a strong effect of the
anisotropic diffusion on the texture, so that the result is more visually appealing
than the other results. Nevertheless, a comparison with the original image shows
that original and reconstructed texture differ significantly. In particular the orien-
tations of the short stripes in the face of the parrot are different. Note that the
anisotropic diffusion induced by the direction of the texture also affects the pupil of
the parrot. On the result of our method we remark that the reconstruction of the
texture is quite conservative, i.e., we stay near the initial guess. The blockyness is
slightly reduced by the evolution process. Taking a look at the eye of the parrot,
the relation of our method to mean curvature flow can be observed: The pupil is
reconstructed as a perfectly circular shape.

We also provide a quantitative error measure to compare the proposed method
with standard and state-of-the art interpolation methods.

To this end we choose the three different test images shown in Figure 8.48 and
seven different interpolation methods: nearest neighbor interpolation, cubic inter-
polation, Lanczos interpolation, the methods proposed by Tschumperlé [167] and by
Roussos [140] and the proposed method. For the latter we also apply the modified
version with p = 1/2.
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BV (u− utrue) Motocross Parrots House
Nearest n. 127.24 40.67 69.53
Cubic 114.66 33.46 64.38
Lanczos 119.10 34.99 66.15
Tschumperlé 120.45 37.35 67.89
Roussos 109.04 31.60 62.74
proposed p = 1/2 108.89 31.58 62.68
proposed p = 1 108.04 31.54 62.72

Table 8.10: Difference between the interpolated image and the high-resolution coun-
terpart, measured in the BV -norm for the different test images and interpolation
methods.

We measure the difference between an interpolated image u and the correspond-
ing high-resolution image utrue with respect to the (discrete) BV -norm,

‖v‖BV :=
∑

i,j

|vi,j|+
∑

i,j

√
(vi+1,j − vi,j)2 + (vi,j+1 − vi,j)2, (8.68)

see Table 8.10. We have chosen the BV -norm for the following reasons:

• Using an Lp-norm of u − utrue is inappropriate, since this error measure is
biased by the interpolation constraint.

• The above discussion shows that the methods act differently mainly in regions,
where the absolute value of ∇utrue is high, i.e., edges and textures. A suitable
error measure should therefore incorporate the gradient.

• The BV -norm is known to be a suitable norm for image processing purposes.

Table 8.10 shows that the proposed method achieves optimal interpolation er-
rors with respect to the BV -norm. Only Roussos’ method is capable of providing
comparable error levels.

8.6 Joint Estimation of Scene and Egomotion

In the following, we recall an approach presented in [16, 17], which jointly estimates
scene and egomotion from a sequence recorded by monocular camera mounted in
a vehicle. We assume that the observed scene is static and that the vehicle drives
towards or through the given scene. Moreover, due to a possibly high speed of the
vehicle, we assume that large displacements of objects in the subsequent frames
occur.
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x′ = x− uk(x)
x

camera k

camera k − 1

Ck = (Rk, hk)

dk(x)
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)

Figure 8.52: Optical flow uk induced by given camera motion Ck = (Rk, hk) and
scene depth dk.
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Figure 8.53: Illustration of the prediction-update loop. In each iteration k the
optical flow uk

obs between Ik−1 and Ik is observed. The update step takes into

account the prediction (Ĉk, d̂k) as well as the observation uk
obs to determine a final

estimate (C
k
, d

k
).
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8.6.1 Task

Given an image sequence Ik, k = 1, . . . , K from a moving camera. We assume that
the camera moves with approximately constant speed, but with possibly curved
trajectory and, as mentioned before, that the scene is static.

The task is to estimate egomotion in terms of camera translation hk and rotation
Rk from frame k − 1 to k and scene depth dk with respect to the frame k.

8.6.2 Related Work

There are four features of the approach described below, based on which our method
can be distinguished from related work:

1. We perform a joint estimation of scene (depth) and egomotion (camera trans-
lation and rotation).

2. We consider a monocular approach (using an image sequence from a single
moving camera).

3. our approach provides a dense estimation (to be distinguished from sparse
approaches in the literature).

4. it is an online approach, i.e. it handles the image sequence in one run through
the whole sequence, only processing the current frame and its predecessor at
the same time (to be distinguished from batch approaches).

Various approaches have been proposed which tackle only one of the tasks of
egomotion or scene estimation.

Concerning approaches that estimate egomotion only, we exemplarily refer to
[85, 126] for methods using sparse features and to [46] for an approach with dense
correspondences.

For the task of scene estimation, the most common strategy is the well studied
stereo approach [62, 75, 179]. Note that the stereo approach by Geiger [62] is
especially designed for stereo data sets as they appear in automotive applications.
Stereo approaches can easily be adapted to estimate scene flow based on sequences
[133, 169, 174].

The dense reconstruction of the scene depth based on arbitrary multiple views
as been studied e.g. in [66, 123, 160]. These methods, however, require information
about the camera motion to be estimated in a pre-processing step.

Among the methods jointly estimating egomotion and scene, there exist various
based on sparse tracked features. The most commonly used techniques here are
factorization methods (cf. [161]) and bundle adjustment (cf. [165]). The latter in
contrast to online approaches process the whole sequence at once. Two recently
local and efficient approaches are proposed in [86, 116]. The approach by Lin et
al. [107] used only two frames to estimated both camera poses and estimation of the
3D scene by a point cloud.
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Methods most related to our approach, since they estimate jointly and densely
egomotion and scene, are the approaches by Weishaupt et al. [176] (with restrictions
on the camera rotation), Irani et al. [78] (using reference planes for image alignment),
Newcombe et al. [124], Bagnato et al. [11] (omni-directional camera) and Engel et
al. [52] (semi-dense disparity maps and egomotion). On the method proposed by
Newcombe we remark that it relies on the concept of a reference frame, based to
which the other frames are processed. As a consequence the method is better suited
for the reconstruction of a fixed scene observed from multiple positions with various
views, as in the context of a camera moving fastly through a scene, which would
require a frequent change of the reference plane.

Finally, we also want to mention learning based methods. Exemplarily, we refer
to the offline learning approached by Lee et al.[89], Saxena et al. [144] and Liu et
al. [108], and the online learning approach by Hadsell et al. [72].

8.6.3 A Model for Optical Flow

In the following, we assume that for two consecutive frames Ik−1 and Ik the camera
motion Ck in terms of a rotation Rk and translation hk is known as well as the scene
depth dk. Recall that we also assume the scene to be static. Our goal is to derive a
model u(Rk, hk, dk) for the optical flow induced by this camera movement and scene
depth. Fig. 8.52 illustrates the setting.

For the sake of notation, we drop the indices k and k−1 and refer to the variables
of the frame k by C,R, h and d. Variables concerning the frame k−1 will be denoted
with a primes. We refer to the frame k− 1 as the first and to frame k as the second
frame.

Let us now consider a fixed 3D point with coordinates X ′ = (X ′
1, X

′
2, X

′
3)

⊤ with
respect to the coordinate system of the first camera position, i.e. the coordinate
system with the origin being the camera position and vector (0, 0, 1)⊤ being its
viewing direction.

In the coordinate system of the second frame, this point takes the coordinates

X =



X1

X2

X3


 = R⊤(X ′ − h). (8.69)

If this point is visible in both frames, we can compare the 2D coordinates of this
point projected to the two image planes. E.g. for the second camera this projection
is given as

PC(X) =
1

X3

(
X1

X2

)
. (8.70)

Using normalized coordinates x together with their corresponding depth d(x),
we can back-project x along the viewing ray (x, 1)⊤ and x′ analogously along (x′, 1)⊤

to find X and X ′:

X = d(x)

(
x
1

)
, X ′ = d′(x′)

(
x′

1

)
. (8.71)
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Combining (8.69) and (8.71) yields

d(x)

(
x
1

)
= R⊤

(
d′(x′)

(
x′

1

)
− h

)
. (8.72)

Now, we define the displacement u(x) of points x and x′ with respect to the second
camera frame by

u(x) = x− x′. (8.73)

Using (8.72) and the camera projection PC with respect to the second camera
(cf. (8.70)), we obtain the following formula for u(x),

u(x;R, h, d) = x− PC

(
d(x)R

(
x
1

)
+ h

)
. (8.74)

Please note that u(x;R, h, d) describing the mapping from point x′ in the first frame
to x in the second frame is defined as a function for x. Consequently, we consider
optical flow to only those points, which are visible in the second frame. Assuming
that the camera viewing direction coincides with the moving direction, which is true
in automotive scenarios, and that the rotation component of the camera motion is
small, any such point is also visible in the first frame. For this reason it is more
suitable to use the flow (8.74) than the flow defined in coordinates x′.

In the approach considered below we will compare the model flow u(X;R, h, d)
with the flow observed from the image sequence (Ik)k. Thus, information of the
two input frames is only used indirectly in our variational approach. An alternative
would be to directly compare the first frame to the image obtained by warping
the second frame according to the flow u(x;R, h, d), i.e. to compare Ik−1(x− u(x))
with Ik (typically after linearization), as it is for example proposed in [11, 52, 176].
The reason for choosing the former alternative is, that we will consider a stochastic
approach, in which we can make use of a measure of uncertainty for the observed
optical flow.

Remark 8.6 (Epipolar geometry). When searching for matching points x and x′ in
two views of a static scene, the epipolar geometry (cf. e.g. [73]) is of importance.
Before describing this issue, let us first define the epipoles for each of the two views
as follows. Let XC1 and X ′

C2
be the 3D coordinates of the camera positions the

two frames are taken from, both with respect to the coordinate system of the other
camera. We denote the projection of X ′

C2
onto the image plane for the first camera

position by e′ and the projection of XC1 onto the image plane for the second camera
position by e. As a fact, for static scenes, if we consider a 3D point X ′ matching
x in the second frame, then its projection onto the first frame always has to lie on
an epipolar line, i.e. a line between x′ and e′ in the first frame, and analogously for
points X matching x′. In our approach, an epipolar line can be retrieved by keeping
x and C = (R, h) in (8.74) fixed and allowing d to vary between 0 and +∞. Then,
x′ = x−u(x;R, h, d) lies on an epipolar line. For this reason, our approach respects
the epipolar geometry of the camera setup.
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8.6.4 Approach

The proposed approach follows an online strategy, by which the image sequence
is processed in one sweep. This strategy is in view of allowing a future on-board
implementation, since it in principle allows an infinitely long image sequence. Our
approach follows the structure of a recursive Bayesian filter, which is briefly described
in the next remark.

Remark 8.7 (Recursive Bayesian Filtering). A Recursive Bayesian Filter [6] deals
with a sequence of observations Ok, k = 0, . . . , K, which are linked with latent state
variables Sk, k = 0, . . . K via a hidden Markov model [51].

The Markov assumption is that every state variable Sk is conditionally dependent
only on its predecessor Sk−1, while an observation variable Ok is only conditionally
dependent on the corresponding state variable Sk. Thus, the system is fully described
by the two conditional probability densities p(Ok|Sk) and p(Sk|Sk−1).

The aim of a recursive Bayesian filtering is to find an approximation of the
conditional probability density p(Sk|Ok), which then can be used to infer e.g. the
most likely hidden state Sk0 from observations {Ok, k = 0, . . . , k0}.

The main steps of a recursive Bayesian filtering are a prediction step, where

p(Sk|Ok−1, . . . , O0) =

∫
p(Sk|Sk−1) p(Sk−1|Ok−1, . . . , O0) dSk−1 (8.75)

is calculated, and an update step, in which the conditional probability density

p(Sk|Ok, . . . , O0) ∝ p(Ok|Sk) p(Sk|Ok−1, . . . , O0) (8.76)

is derived. Both steps are subsequently applied in an iteration loop k = 1, . . . , K.
A widely used specialization of recursive Bayesian filtering is the Kalman fil-

ter [81, 177].

In our approach we assume that the observations Ok, k = 0, . . . , K are given as
the optical flow uk

obs between frames Ik−1 and Ik, estimated by means of a standard
optical flow algorithm. We refer to uk

obs as the observed optical flow. Moreover, we
assume that this flow can be provided in terms of a Gaussian probability density
function, i.e.

uk
obs(x) ∝ N (µobs(x),Σobs(x)) (8.77)

for some µobs(x) ∈ R2 and Σobs(x) ∈ R2×2 is symmetric and positive definite. In
particular, Σobs(x) serves as an accuracy measure in our approach.

The state variables Sk, k = 0, . . . , K comprise the camera motion Ck = (hk, Rk)
and the scene depth dk. We refer to Fig. 8.53 for an illustration.

As already indicated, our approach follows the scheme of a recursive Bayesian
filter. It consists of an iteration k = 1, . . . , K, in which a prediction and update step
are performed. To ease the discrimination between variables and parameters used in
either the prediction or the update step, we use the ’hat’ symbol for variables in the
prediction step and the ’bar’ symbol in the update step, e.g. x̂ and x, respectively.
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In the prediction step, we determine a prediction of Sk in terms of a conditional
Gaussian probability density ppre(S

k|Sk−1) with mean µ̂Sk and covariance matrix

Σ̂Sk :

ppre(S
k|Sk−1) = N (µ̂Sk , Σ̂Sk). (8.78)

We will describe the details of this step later on.

In the update step, we exploit the probability density

p(Sk|Ok, Sk−1) = p(Ok|Sk)pprior(S
k|Sk−1), (8.79)

where pprior(S
k|Sk−1) incorporates the prediction ppre(S

k|Sk−1) as a temporal prior
as well as a spatial prior pspatial(S

k) for the depth dk:

pprior(S
k|Sk−1) = ppre(S

k|Sk−1)pspatial(S
k). (8.80)

The probability density p(Ok|Sk), which describes the dependency of the observation
to the state variable, will be non-Gaussian. As a consequence, p(Sk|Ok, Sk−1) will

also be non-Gaussian. We find the actual estimate S
k
for Sk by determining one

of the modes of p(Sk|Ok, Sk−1). Performing a Laplacian approximation [164] at the

point S
k
yields

p(Sk|Ok, Sk−1) ∝ N (µSk ,ΣSk) (8.81)

with mean µSk and covariance matrix ΣSk .

We now detail the choice for each probability density mentioned so far.

Observation As observation of Ok in the k-th step we consider the empirical
optical flow uk

obs between frame Ik−1 and frame Ik. As already mentioned, we apply
a local Lukas-Kanade approach to obtain this optical flow. In the first iteration,
where no image pair (Ik−1, Ik) is available, we set the observation to a zero flow.

In addition to estimating the flow uk
obs, we exploit the structure tensor used for

determining uk
obs to derive also a measure for the certainty of uk

obs. We interpret
uk
obs as the mean of a Gaussian distribution and its certainty as the precision matrix

(Σuobs
)−1.

In order to compare the model optical flow u(X;Rk, hk, dk) from (8.74) with
the observed one, we evaluate its Gaussian distribution at point u(x;Rk, hk, dk) and
obtain

p(Ok|Sk)

=
1

C

∑

x

exp

(
−1

2
(u(x;Rk, hk, dk)− µk

obs)
⊤(Σk

obs)
−1(u(x;Rk, hk, dk)− û(x))

)

(8.82)

with a fixed normalization constant C > 0.
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Spatial prior Concerning the spatial prior for the depth map dk we resort to a
classical quadratic regularization of the gradient of dk. To this end, we set

pspatial(S
k) =

1

C

∑

x

exp(− 1

2σ2
spatial

‖∇d(x)‖2) (8.83)

with a fixed standard deviation σspatial > 0 and a normalization constant C > 0.
Experiments show that this choice leads to a robust estimation of the scene depth.
We note that for the ego-motion parameters Ck = (hk, Rk) the only regularization
will be a temporal one.

Temporal prior For the temporal prior, we consider the distribution ppre(S
k|Sk−1)

defined as in (8.78). Note that ppre(S
k|Sk−1) in general is a joint distribution for

the variables dk and Ck = (hk, Rk). In our approach we make the assumption that
depth dk and camera motion Ck are independent from each other. Consequently,
Σ̂Sk has a block structure of the form

Σ̂Sk =

(
Σ̂dk 0

0 Σ̂Ck

)
. (8.84)

To derive the parameters µ̂Sk , Σ̂Sk is part of the prediction step detailed below.

Prediction step In the prediction step, we determine the probability ppre(S
k|Sk−1),

which we assume to be Gaussian. Moreover, we assume dk and Ck to be inde-
pendent from each other, i.e. ppre(S

k|Sk−1) = ppre(C
k|Sk−1) ppre(d

k|Sk−1). With

these assumptions, it suffices to determine the mean µ̂Ck and covariance Σ̂Ck of
ppre(C

k|Sk−1) and the mean µ̂dk and covariance Σ̂dk of ppre(d
k|Sk−1). On the later

as a simplification we assume an independent distribution in each image location,
so that Σ̂dk becomes a diagonal matrix.

For the first iterate of the Kalman filter, the prediction is set using initial values
µ̂d0 = 0, µ̂R0 = Id and µ̂h0 6= 0 to a constant value in the range of a reasonable camera
speed. For the covariance matrices we use diagonal matrices of the form σ2 Id with
large constants σ > 0 for each random variable. The subsequent predictions (k ≥ 1)
are based on the result of the previous update step.

For the camera motion, assuming an almost constant camera speed, we set µ̂Ck :=
µCk−1 , where µCk−1 is the mean the distribution of Ck−1 obtained from the previous
update step. For the covariance matrix for Ck, we set Σ̂Ck := ΣCk−1 + ΣC , where
ΣCk−1 is again known from the previous update step and ΣC is a diagonal matrix with
diagonal entries σh and σR for the translational and rotational part, respectively,
accounting for some uncertainty introduced in the transition from step k − 1 to k.
The predicted distribution of Ck then is given as

p(Ck, Ck−1) = NMC (µ̂Ck , Σ̂Ck), (8.85)

whereNMc(µ,Σ) is the approximate normal distribution with mean µ and covariance
matrix Σ on the manifoldMC = SE(3) (cf. [17] for details).
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In order to find µ̂dk , we will warp the map d
k−1

from the view of the current
step to the view of that camera position, which is mostly likely to occur in the next
step. After having set the prediction for Ck the most likely position is obtained by
translating and rotating the camera position by

Ĉk := µ̂Ĉk = µCk−1 (8.86)

⇔(ĥk, R̂k) = (h
k−1

, R
k−1

). (8.87)

The warping process is performed as follows. In order to determine d̂k at position
x in frame Ik, we use (8.73) and (8.74) together with Ĉk, dk−1 to find a point x′ in
frame Ik−1 corresponding to x in the sense that their two reprojections provide the
same point in the 3D scene. We find from (8.73), (8.74) and (8.87) that

x′ ≈ x− u(x; R̂k, ĥk, dk−1(x)) = PC(d
k−1(x)R

k−1
(
x
1

)
+ h

k−1
). (8.88)

By bilinear interpolation of dk−1 at point x′ we find d′(x′). We then transport the
depth d′(x′) to the camera view of the k-th frame by setting

d̂k(x) := (R
k−1

)⊤
(
d′(x′)

(
x′

1

)
+ h

k−1
)

(8.89)

We then choose d̂ to be the mean of the prediction ppre(d
k|Sk−1).

Finally, the covariance Σ̂dk is determined as follows. For simplicity, we assume
that the covariance matrix is diagonal with entries σ̂2

dk
(x). In order to derive σ̂dk(x)

for d̂(x), we first extract the diagonal entries σdk−1(x) from ΣSk−1 (from the last
update step) and then transport them analogously to dk−1(x) to the next time
step. To account for the uncertainty of this transformation, the resulting variance
is increased by adding an additional value σ2

d,

(σ̂k−1(x))2 := (σk−1(x′))2 + σ2
d. (8.90)

With the above setting, the probability density ppre(S
k|Sk−1) is fully determined.

Update step In the update step, we determine a mode of p(Sk|Ok, Sk−1)). To
this end, we solve the non-convex optimization problem

S
k
:= argmin

Sk∈X
F(Sk), F(Sk) := − ln p(Sk|Ok, Sk−1), (8.91)

where Sk = (dk, Ck) ∈ X = Rn
≥0 × SE(3) with SE(3) being the special Euclidean

group of Rn and Rn
+ is the set of n-dimensional vectors with non-negative entries.

The components d
k
and C

k
of S

k
are the actual estimates for dk and Ck. Moreover,

we determine Σdk and ΣCk , which are used in the next prediction step.

This concludes the overview over the different steps of our approach.
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Please observe that in our prediction step, we estimate the probability density
p(Sk|Ok−1, . . . , O0) only approximately. The reason is that computational efficiency
prohibits to perform the integration in (8.75), which is over all possible states Sk−1,
to a high accuracy. Instead, we retrieve an approximation of p(Sk|Ok−1, . . . , O0)
by assuming that p(Sk|Ok−1, Sk−1) is Gaussian (with diagonal covariance matrix for
the depth part) and obtaining the mean and covariance matrix by warping the mean
and covariance matrix of p(Sk|Ok) to the next step as described above. Due to this
inexact integration, our approach in a strict sense is not recursive Bayesian filter as
in Remark 8.7.

Remark 8.8 (Regularization). For the task of determining the optical flow from
a pair/sequence of images (monocular or stereo) a common strategy is to take into
account for the epipolar geometry, i.e. use a-priori information about which lines in
the images corresponding matches have to lie on (cf. Remark 8.6). Our approach
implicitly makes use of the epipolar geometry by using the optical flow model (8.74).
This can be seen by assuming the camera parameters C = (R, h) in (8.74) to be
fixed and allowing d(x) to vary. Then, the resulting point x′ := x− u(x;R, h, d(x))
corresponding to x moves exactly according to the epipolar geometry. Therefore, in
our approach the optical flow is implicitly regularized with respect to the epipolar
geometry by its dependence on d, which is in turn regularized by its spatial and
temporal prior. Moreover, we stress that it is more suitable to have a regularization
on a physical quantity like the depth rather than on an artificial variable like the
optical flow.

Remark 8.9 (Non-convexity of F in the update step). We observe that the func-
tional F(S) in (8.91) to be minimized during the update step is non-convex. This
convexity is due to both the data term and the manifold constraint on the camera
parameters C ∈ SE(3). In the data term both the product of depth d(x) with cam-
era rotation R and the camera projection PC are causing non-convexity. It raises
the question if one of the strategies discussed in Chapters 5 and 6 can be applied
in this context. Firstly, in view of a relaxation of the functional, we have to re-
mark that a relaxation technique would also have to relax the manifold constraint,
which is not an option in this case. Secondly, we observe that a fixed point approach
would decouple the joint optimization with respect to d,R, h, leading to an alternat-
ing minimization. In our previous work ([16] with an alternating minimization and
[17] with a joint minimization) we have observed that the joint approach shows a
higher reconstruction quality. Moreover, concerning the non-convexity of the data
term due to the camera projection, we remark that especially this projection enables
us to estimate depth from a monocular image sequence, which would not be possible
e.g. with a orthogonal projection. We expect a fixed point approach to weaken the
influence of the data term. Finally, the non-convexity due to the manifold constraint
cannot be resolved by a fixed point approach. These issues led us to directly tackle
the non-convex optimization.
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8.6.5 Numerics

Concerning the numerical implementation, some issue arise, which are briefly dis-
cussed in the following. For a detailed presentation of the implementation of our
approach we refer to [17].

Multiscale approach In the implementation of our approach we choose a Lukas-
Kanade approach [110] to estimate the optical flow uobs in terms of mean µobs

and covariance matrix Σobs. The Lukas-Kanade approach relies on a linearized
brightness constancy assumption which assumes small displacements. This
limitation is commonly resolved by considering a multi-scale approach, see
e.g. [31]. Therefore, we apply the above approach to a cascade of downsampled
problems, starting with the coarsest, and propagating the results to the next
finer level until finally reaching the full resolution of the input images.

Joint optimization on Manifold Compared to earlier work [16], we propose in
[17] to jointly optimize the objective function (8.91) with respect to the un-
knowns d and C. To this end, some effort has been made to adapt the previous
method to work on the manifold M := Rn × SE(3). For details we refer to
Section 7.3 and [17].

Newton method, proximal point algorithm We apply a Newton-like method
to minimize the functional F(S) in (8.91), where we determine the search di-
rection by −B∇TF(S), where ∇TF(S) is the gradient of F(S) in the tangent
space TSM of M at S (cf. Section 7.3). Moreover, B is a positive definite
bilinear form on the tangent space, which incorporates second order informa-
tion on F as in the case of the classical Newton approach. In regions, where
F(S) is convex, the bilinear form B is chosen similar as in the classical New-
ton approach (inverse of the Hessian at point S), except that on the manifold
M we exploit the Levi-Civita connection instead of the classical Hessian of
S. The resulting bilinear form B then is positive definite, a property which
guarantees that −B∇TF(S) is a descent direction.

In regions, where F(S) is concave, care has to be taken to assert the positive
definiteness of B. To this end, we propose to use a proximal point method
[137] in concave regions, i.e. we add an proximity term to F(S) so that the
objective function becomes convex. The required modifications are described
in detail in [17, Section 4].

We combine this Newton-like method with a line search following Wolfe’s
Rule [27].

8.6.6 Experiments

We evaluated our approach on two different data sets. The first one is a data set of
sequences recorded by a camera system mounted in a driving car [114]. We refer to
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(a) input frame

❢
�
✁

♥
✂
�
✁

(b) estimated depth map

(c) reconstructed scene and camera track

Figure 8.54: Avenue sequence: joint estimation of scene and egomotion. The depth
map corresponding to the view of one input frame (a) is depicted in (b). The camera
trajectory and the reprojected 3D scene is shown in (c).
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(a) input frame

❢
�
✁

♥
✂
�
✁

(b) estimated depth map

(c) reconstructed scene and camera track

Figure 8.55: City sequence: joint estimation of scene and egomotion. The depth
map corresponding to the view of one input frame (a) is depicted in (b). The camera
trajectory and the reprojected 3D scene is shown in (c).
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(a) frame

✷
�
�
✁

�
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(b) depth estimated by Geiger et
al. [62]

✷
�
�
✁

�
✁

(c) depth estimated by Szeliski et
al. [162]

✷
�
�
✁

�
✁

(d) depth estimated by Rhemann et
al. [134]

❢✂
✄

♥
☎
✂
✄

(e) depth estimated by our approach

Figure 8.56: Comparison of the proposed approach to three state-of-the-art stereo
approaches. The proposed approach provides a dense and smooth depth map. It
compares favorably with the stereo approaches, except for the region around the
epipole, where, due to nature of the problem, accurate estimation of depth is not
possible. Please note that the depth and egomotion from monocular sequences can
only be estimated up to a global scale. Thus, to allow a comparison to the results
of the stereo approaches, the scale has been determined by a one-parameter fit to
the stereo data.
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(b) depth
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(c) depth variance

Figure 8.57: Augmenting the estimated depth map d
k
with its variance σk (diagonal

entries of the covariance matrix Σ
k
). We show two exemplary frames. In particular,

our approach is aware of the uncertainty of the estimation near the epipole.
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(c)

Figure 8.58: Synthetic sequence enpeda-2-2. (a) Image frames 100 and 380, (b)
ground truth depth maps (black pixels indicate missing depth information), (c)
estimated depth map with global scale adapted to ground truth.
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Figure 8.59: Comparison of the camera trajectory estimated by the proposed
approach to the result of the Voodoo Tracker software. (a) - (g) visual comparison.
The shape of the estimated trajectories matches well to those of the Voodoo tracker.
However, we observe some integration errors, which aggregate over time and lead to
a different speed, in which the camera moves along the trajectory (as can be seen
from the markers, which indicate a selection of camera positions), which might be

due to an over-smoothing of the camera translation h
k
. The misfit for the Junction

sequence is due to the deceleration and acceleration of the car, which violates our
assumptions of a fairly constant camera speed. (h) error between the estimated
camera positions relative to the length (start-to-end-point) of the trajectories.
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(a) Avenue sequence, frame
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Figure 8.60: Comparison of our approach without (middle) and with temporal reg-
ularization (based on prediction). Without temporal regularization the depth is in-
accurately estimated in various regions. Problems with wrong depth estimates occur
in particular near the epipole (centered boxes in the top row) and in low-textured
regions with (marked regions in the bottom row). Evaluating the full sequence
(see movie at the website http://hci.iwr.uni-heidelberg.de/VSFM/ICCV11/

videos/Avenue_depthmap_without_and_with_prior.avi) shows that these errors
are highly oscillating, leading to a severe flickering in the sequence.
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it as the HCI data set. These sequences are actually stereo sequences, from which
for our approach we use only the image from the left camera. Most of the selected
scene were almost static scenes up to some minor exceptions like shaking of trees,
pedestrians, snow fall, etc. It turned out that our approach is robust against such
small movements. The selected set of sequences is available online 2. All considered
sequences and the corresponding estimations of depth and egomotion can be found
on the web page http://hci.iwr.uni-heidelberg.de/VSFM/.

The second data set is a synthetic image sequence taken from the enpeda project
(cf. http://ccv.wordpress.fos.auckland.ac.nz/eisats/). The sequence is cre-
ated with computer graphics tools and is augmented by ground truth information
such as the true scene depth, which allows us to evaluate the exact error of our
approach.

Let us start with the first data set. We present two exemplary results for the
Avenue and City sequence in Figs. 8.54 and 8.55. Each figure depicts the estimated
depth for one particular frame as well as the observed grayscale image backprojected
to 3D by means of the estimated depth and augmented by the estimated camera
trajectory. The estimated camera position corresponding to the particular image
frame is indicated by a green icon. We remark that in contrast to stereo, in the
monocular setup scene and egomotion can only be determined up to an unknown
global scale. Experiments show, that this global scale due to temporal regularization
stay constant over time after being fixed by the initialization.

In order to give an impression on the quality of the results, we compare our ap-
proach to three state-of-the-art stereo approaches proposed by Rhemann et al. [134],
Szeliski et al. [162] and Geiger et al. [62], using the stereo image sequences from the
HCI data set. Due to the known baseline of the stereo cameras, these methods typ-
ically are calibrated to the true global scale. To allow the comparison of our results
to the stereo results, we perform a least-squares fit of the depth data to retrieve
the unknown global scale. The comparison (cf. Fig. 8.56) then shows, that our ap-
proach produces a dense and smooth depth map, which except from regions near the
epipole, where due to the ill-posedness of the problem an estimation of depth per se
is difficult, our monocular approach is competitive to stereo approaches. Moreover,
since we follow a probabilistic approach, our results are equipped with a certainty
measure for the depth (obtained from the covariance matrix Σdk of the depth es-

timate d
k
), which allows us to identify regions with uncertain depth estimates due

to closeness to the epipole or absence of matchable structures in the images. (cf.
Fig. 8.57).

To further evaluate our approach, we consider also the synthetic enpeda data set.
Fig. 8.58 shows the results of our approach for two distinct image frames together
with the ground truth depth data from the data set. Please note that in the second
frame two moving cars (one oncoming, one approaching the crossing from left) are
present, which violates our assumption of a static scene. As a consequence, the

2http://hci.iwr.uni-heidelberg.de//Benchmarks/document/Real_Static_Scene_

Image_Sequences_Dataset

213



CHAPTER 8. APPLICATIONS

depth of the cars is incorrectly estimated. The violation of our assumption results,
however, only in a local distortion and has no effect on the estimated depth of
the static parts (and the estimated egomotion, see below), which demonstrates the
robustness of our approach to such violations. Considering the statics parts of the
scene, the results of our approach are close to the ground truth depth except for a
region around the epipole in the images (left to the image center for the first and in
the image center for the second frame), where on principle a precise estimate of the
depth due to vanishing information in the flow is impossible. As mentioned before,
we account for this problem by also estimating the certainty of the depth by means
of a covariance matrix see Fig. 8.57.

In order to evaluate our approach with respect to the estimated egomotion, we
compare it to the results of the Voodoo Camera Tracker3, a batch approach, which
based on the full sequence uses sparse feature matches to determine the egomotion.
We remark that we retrieve the camera trajectory in our approach by integrating
the individual camera translations hk over time. A comparison of the camera tra-
jectories found by our approach and the batch approach is depicted in Fig. 8.59. We
observe that the camera trajectory in terms of congruency is quite well estimated
by our approach, except for the Junction sequence. In the latter sequence, the car
slows down before taking a right turn and accelerates afterwards. This violates our
assumption that the camera speed is constant. As a consequence, deceleration and
acceleration are underestimated resulting in some error in the camera trajectory.
Moreover, for most of the test sequences, we observe some error in the exact lo-
calization of the camera positions (cross markers) on the camera trajectory, which
might be due to a certain temporal smoothing of the egomotion.

Finally, we also want to stress the importance of the temporal prior obtained from
the recursive approach with a prediction step. To this end we compare our approach
to a variant without temporal smoothing, i.e. where we omit the term ppre. As a
consequence, the depth is only estimated based on two consecutive image frames.
The results of both are depicted in Fig. 8.60. The approach without temporal
filtering shows a far worse results with several regions of severely mis-estimated
depth. The problematic regions appear not only near the epipole, (centered boxes in
the top row), but also in the foreground (boxes in the bottom row) and due to missing
temporal regularization show a high variability in time (see also the corresponding
movie available from the web page http://hci.iwr.uni-heidelberg.de/VSFM/).

3http://www.digilab.uni-hannover.de/docs/manual.html, v1.2.0b
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Chapter 9

Conclusion

In this thesis, we studied variational approaches for solving inverse problems in
image processing and computer vision. Hereby, a major focus was on approaches
where the regularization term adapts to the specific inverse problem at hand.

We presented a general approach for adaptive TV regularization. This con-
cept allows for various models for penalizing the gradient of the unknown signal,
e.g. isotropic TV regularization with locally varying regularization parameter and
anisotropic TV regularization. Moreover, by introducing arbitrary differential oper-
ators, it covers also models of higher-order TV. For this general model we showed
existence and uniqueness of a minimizer of the objective function. We stress that
our concept embraces various adaptive regularization approaches proposed in the
literature.

Based on our general model, we considered two classes of adaptivity. The first one
is the class of data-driven adaptive methods, where the adaptivity is steered solely by
the (possibly pre-processed) input data. The second class comprises solution-driven
adaptive variants, where the adaptivity is defined as an explicit mapping from the
solution space to some parameter space. The latter approach has the advantage, that
adaptivity can be steered by the reconstructed signal and thus better promotes the
reconstruction of important data structures, while being less sensitive to distortions
in the input data.

Both classes differ in the nature of the underlying minimization problem. While
the data-driven approaches in general lead to convex minimization problems, the
solution-driven approaches, if tackled in a direct way, in general results in non-
convex minimization problems. In particular for the models of adaptivity discussed
in this thesis, we obtain non-convex functionals. It has to be stressed that for non-
convex minimization problem in contrast to convex problems challenges arise both
in theory and in the numerical treatment.

The standard way to resolve these issues is to apply a relaxation technique. In
Chapter 5 we have considered specific relaxation techniques for functionals defined
on W 1,p(Ω) and BV (Ω). We considered two applications, namely displacement
regularization and image interpolation in Sections 8.2 and 8.5, respectively, where a
solution-driven adaptive weighting of the data term lead to non-convex optimization
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problems. For these applications we showed that a relaxation strategy is beneficial
and lead to satisfactory results.

For solution-driven adaptive regularization, we observed that the non-convex
dependency of the regularization term on the unknown in theory can be tackled by
relaxation, but that due to missing analytic formulas for the relaxed functionals it
is unclear how to numerically solve the relaxed minimization problem.

We therefore introduced an alternative strategy to resolve the problem of non-
convexity using the concept of a fixed point problem. The core of this strategy
is (i) to consider the operator T(v) mapping a function v which determines the
adaptivity of the regularizer to the solution of the convex optimization problem
(with this v being fixed), and (ii) to search for a fixed point of T.

Such fixed point approaches already have been considered in the literature, but
then usually as ad hoc approaches without providing mathematical theory to support
the approach.

For our strategy we were able provide theory both in the continuous and dis-
crete setting. In the continuous setting we have proved existence of a fixed point
under mild assumptions. In the discrete setting, we identified the equivalence to
quasi-variational inequality problems (QVIPs). This equivalence enabled us to use
existence theory for QVIPs from the literature.

For showing uniqueness, however, the situation was different due to the missing
strong monotonicity of the operator occurring in the QVIPs occurring in our ap-
proach, which in general leads to an ambiguity in one component of the solution
of the QVIP. Strong monotonicity, however, is a prerequisite for applying standard
theory for uniqueness from the literature. This issue made it necessary to adapt
standard theory to our special case. By exploiting the coupling between the fixed
point and the solution of the QVIP, we were able to show uniqueness of the fixed
point of T under sufficient conditions (guaranteeing a contraction). In addition, we
provided a convergent algorithm for solving the considered fixed point problem.

We finally discussed various applications from image processing and computer
vision. In these applications we utilized the theory and numerical methods pre-
sented in this thesis. The results of our applications demonstrated that adaptive
regularization in general provides reconstructions of better quality than comparable
non-adaptive approaches. In several applications, the solution-driven adaptive reg-
ularization produced results, which were significantly better than than the results
from the data-driven counterparts. This improvement is due to the fact that the
regularization term is able to better adapt to structures present in the unknown
signal, while being less sensitive to distortions of the input data. In particular, this
shows that it is worthwhile to solve the more challenging fixed point problem.

We identified some drawbacks of our approaches. Firstly, since they are build
on the total variation semi-norm, our approaches oversmooth textured regions in
the results. Secondly, we require strictly convex data terms in the solution-driven
approaches. This is due to the fact that the adaptivity is determined based on a
single function v. Currently we are not aware of a meaningful generalization to
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sets of v. Finally, our experiments show that, while solution-driven approach in
general improve the results during their outer iteration, there are cases where the
data-driven variant with optimally chosen parameters provides even better results.
We are currently not aware of a criterion to identify these cases.

One plan for future work is to tackle the problem of oversmoothing of textures.
In this regard, generalizing our concept to either non-local total variation models
or structure/texture decomposition models as discussed in Chapter 2 seems to be
promissing.
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NOMENCLATURE

Nomenclature

measures∫
fdL Lebesgue integral of f

Du, |Du| signed/ positive Radon measures p. 19
Dus singular part of Du

function spaces
Ck(Ω, Y ) k-times continuously differentiable functions defined on Ω

with values in Y
Ck

c (Ω, Y ) functions in Ck(Ω, Y ) with compact support
Lp(Ω) Space of Lebesgue-integrable functions

we omit Ω if it is clear from the context
Wm,p(Ω) Sobolev functions with weak derivatives up to order m in

Lp

BV (Ω) space of functions of bounded variations p. 13
BV l(Ω) space of functions of bounded variations of order l p. 34

(semi-)norms and metrics
‖ · ‖2 Euclidean norm in Rn

‖ · ‖L(Ω) norm of Lp(Ω)
TV total variation semi-norm p. 12
TGV total generalized variation semi-norm
dist(x,A) distance from point x to set A. p. 81

functionals
F functional to be minimized
G Fenchel dual of F p. 28
FROF ROF functional p. 12
S data term
R regularization term
F♦ relaxed functional in W 1,p(Ω) p. 65
F♦BV relaxed functional in BV (Ω)

differential operators
∇l differential operator including all orders equal to l p. 33

divl adjoint operator to ∇l

∇ differential operator including all orders equal up to l

div adjoint operator to ∇
TV

l

total variation semi-norm TV
l

(u) =
∑l

k=1 TV
k(u)

L discrete divergence operator p. 16

operators
Q(x, v) linear operator defining adaptivity p. 77
A application dependent operator p. 38
M linear operator in QVIP p. 75
T(v), solution operator to minuF(u, v) p. 75

T̂ solution operator to VI p. 91
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NOMENCLATURE

constants
Cb,CA constants of A for lower/upper bounds p. 45
Ca, constant of A for coercivity p. 46
Cmin radius of a ball included in Dloc p. 41
Cmax radius of a ball including in Dloc

Cl Lipschitz constant of v → A(x, v) p. 79

γ Lipschitz constant of M ◦ T̂ p. 91
η variation rate p. 91
µ Lipschitz constant of g p. 91
ν monotonicity constant of g

functions
f : X ⇒ Y set-valued function p. 89
χe indicator function for edge locations p. 50
ve vector field of edge normals
χsd indicator function for locations of slope discontinuities p. 56

sets

R extended real values R ∪ {+∞}
Ω d-dimensional open bounded domain with Lipschitz do-

main
∂Ω boundary of Ω p. 48
level≤t(f) sublevel set of f p. 26
level≥t(f) superlevel set of f
K convex set p. 25
D (convex) constraint set for dual variable p p. 35
C (convex) constraint set for dual variable v p. 88
Dloc local constraint set for variable pi p. 36

B̊r(x) open ball of radius r centered at x p. 126
Br(x) closed ball of radius r centered at x
Rect(r, α, β) rectangle p. 37
Ell(r, α, β) ellipse p. 58
Par(r1, r2, α) parallelogram p. 59

differential geometry
Exp exponential map p. 111
SE(3)(n) special Euclidean group of Rn p. 110

statistic
N (µ,Σ) Gaussian distribution of mean µ and covariance matrix

Σ
p. 11
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NOMENCLATURE

weak convergence
⇀ weak convergence in Sobolev spaces p. 26
∗
⇀ weak ∗ convergence in BV
L2

⇀ weak convergence L2(Ω) p. 87
X
⇀ joint weak/weakstar convergence in L2(Ω) ∩ BV (Ω) p. 39

Bayesian filtering
O observation variable p. 201
S state variable
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denoising with adaptive constraint sets. In 3rd Int. Conference on Scale Space
and Variational Methods in Computer Vision, pages 206–217. Springer, 2012.

[100] F. Lenzen, F. Becker, J. Lellmann, S. Petra, and C. Schnörr. A class of
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