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Abstract

When considering the task of denoising ToF data, two issues arise concerning the optimal
strategy. The first one is the choice of an appropriate denoising method and its adaptation to
ToF data, the second one is the issue of the optimal positioning of the denoising step within
the processing pipeline between acquisition of raw data of the sensor and the final output of
the depth map. Concerning the first issue, several denoising approaches specifically for ToF
data have been proposed in literature, and one contribution of this paper is to provide an
overview. To tackle the second issue, we exemplarily focus on two state-of-the-art methods,
the bilateral filtering and total variation (TV) denoising and discuss several alternatives
of positions in the pipeline, where these methods can be applied. In our experiments,
we compare and evaluate the results of each combination of method and position both
qualitatively and quantitatively. It turns out, that for TV denoising the optimal position
is at the very end of the pipeline. For the bilateral filter, a quantitative comparison shows
that applying it to the raw data together with a subsequent median filtering provides a low
error to ground truth. Qualitatively, it competes with applying the (cross-) bilateral filter
to the depth data. In particular, the optimal position in general depends on the considered
denoising method. As a consequence, for any newly introduced denoising technique, finding
its optimal position within the pipeline is an open issue.
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1 Introduction

Measurements from Time-of-Flight cameras suffer from severe noise. This noise is introduced,
when the raw image data are recorded by the camera sensor, and is amplified in the subsequent
post-processing, where the actual depth data are retrieved. For a detailed discussion on the noise
we refer the reader to [29].

Higher level computer vision algorithms are often sensitive to the noise level typically for
ToF data and it is inevitable to denoise the data before applying these methods. Three major
questions arise concerning the denoising task:

1. Which state-of-the-art method should be chosen for denoising the depth data?

2. At which stage of the data processing should the denoising method be applied? Two
obvious alternatives are to denoise the raw data or the final depth data. Denoising of some
intermediate data is also possible.
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3. Which modifications can be applied to state-of-the-art methods to increase their perfor-
mance with respect to ToF data?

We start with an overview over state-of-the-art denoising methods for standard gray or color
images in Section 2.1, including the class of learning approaches, which are gaining importance
in this field. Afterwards, we discuss approaches which are proposed in literature specifically for
denoising ToF data, cf. Section 2.2.

The main focus of this paper is the question of the optimal position of the denoising method
within the data processing pipeline. Not much research has been done in this direction so far.
Most of the related work solely considers denoising of the depth map provided by the camera.
One reason for this might be the fact that for most cameras, the raw data can not be accessed
from outside. However, since having access to raw data is of interest for scientific applications
of ToF cameras, in future more camera manufactures might consider to provide corresponding
interfaces.

To answer the question of positioning, we exemplarily consider in Section 3 two denoising
methods, which are commonly used for ToF data, the bilateral filter and total variation-(TV)-
based denoising. We discuss several alternatives of how to apply these methods to the raw,
intermediate and final data processed by the ToF camera. In addition, we discuss modifications
to improve the restoration quality of the considered methods. These modifications consist in
making the approaches adaptive, anisotropic and, in particular for the TV denoising approach,
to consider second-order smoothing terms.

In the experimental part in Section 4 we evaluate the different approaches based on a test
data set with ground truth. It turns out that for TV denoising the optimal position is at the
end of the processing pipeline. For the bilateral filter, we found that applying it to the raw
channels and performing a subsequent median filter provides the smallest quantitative error.
Qualitatively, it competes with applying the bilateral and the cross-bilateral filter to the depth
data.

2 State-of-the-art Denoising Techniques

2.1 Denoising of Standard Images

The task of denoising faces the major problem of finding a trade-off between removing the noise
and preserving the detailed structures of the original data. For images, these details are mainly
the edges and textures. Applying for example classical Gaussian convolution for images, one
obtains a blurred images with unsharp edges and with textures removed.

Various approaches exist in literature, which tackle both edge and texture preservation. One
edge preserving variant of Gaussian convolution is the bilateral filter [2, 54, 16]. Here, the filter
kernel decreases with increasing spatial distance as well as with increasing distance in intensity.
Another family of denoising methods are the PDE-based approaches. They built on the fact that
Gaussian convolution provides a solution to the linear diffusion equation, but use modifications
to guarantee edge preservation. The most prominent methods of this kind are the nonlinear
diffusion proposed by Perona and Malik [40] and the anisotropic diffusion [55].

The bilateral filter as well as the mentioned PDE approaches provide solutions which are
smooth in the mathematical sense. As a consequence, sharp jumps in intensity or color can
only be modeled by steep but smooth slopes. There exists approaches which explicitly allow
for piecewise constant solutions, where edges can be represented by sharp jumps. Among these
are the wavelet methods, see e.g. [11]. In image processing the most commonly used wavelets
are the Haar wavelets, which represent a discrete space of piecewise constant functions. Soft
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thresholding then is applied to the wavelet coefficients of the image to remove highly oscillating
components.

In 1992 Rudin, Osher and Fatemi [44] proposed to consider a variational approach using
total variation (TV) regularization. In particular, this approach allows for piecewise constant
solutions and thus is able to restore image edges sharply. Due to the variational formulation
with a data-fidelity and a regularization term, this ansatz easily extends to other applications in
computer vision such as optical flow and stereo, cf. e.g. [36, 38]. The classical TV regularization
faces the drawbacks of a loss of contrast and stair-casing artifacts (piecewise constant recon-
struction of the data where a smooth slope would be expected). Various TV variants have been
proposed to overcome these drawbacks, including adaptive TV [21, 10], anisotropic TV [52, 31]
and approaches of higher order TV [4, 51, 30].

Another approach dealing with piecewise smooth functions has been proposed by Mumford
and Shah [34, 42].

The methods mentioned so far all share the problem that textures in the data are over-
smoothed. Non-local approaches such as non-local means [5], non-local TV [44, 20, 27] and the
BM3D methods (e.g. [9]) turned out to have better texture preserving qualities.

Besides image denoising techniques, which are driven by a single input image, we also discuss
data-base driven methods, which are gaining importance in image processing.

The underlying idea of database-driven methods is to learn a map from low-quality (noisy)
images to high-quality images based on example pairs of such images. Burger et al. [6] proposed
denoising images using multi-layer Perceptrons (MLPs): A given noisy image is divided into an
overlapping set of image patches (small sub-windows). For each noisy patch, the corresponding
clean patch is predicted using an MLP that is trained based on a large collection of pairs of
input noisy and the corresponding output clean image patches. Given the patch predictions,
the final image-valued output is reconstructed by taking averages for overlapping windows. A
similar approach has also been proposed by Jain and Seung [24] in which convolutional networks
are adopted.

An important advantage of database-driven methods is that they relieve the user from the
extremely difficult task of designing an analytical noise model. This is especially important
when the underlying noise generation process is non-Gaussian or, in general, not well-studied or
modeled. Accordingly, conventional analytic noise models cannot be straightforwardly applied.
Database-driven approaches enable building a denoising system (and general image enhancement
system) by preparing a set of example pairs of clean and noisy images and learning specific
degradation models from such training data. This has been demonstrated by the success of
database-driven approaches for the related problems of single-image super-resolution and artifacts
removal in compressed images, in which no analytical noise models are available. The reported
results in these domains were superior to the state-of-the-art algorithms [19, 53, 25, 26]. Even
for the extensively studied Gaussian noise case, the reported performances were comparable to
state-of-the-art image denoising algorithms [24, 6].

One major drawback is that these algorithms are ‘black boxes’: due to the non-parametric
nature of modeling, the trained denoising algorithms do not assist understanding the underlying
noise generation or image degradation processes. Another limitation that is especially relevant
for ToF image denoising is that they require pairs of clean and noisy images. Please see the next
section for a more detailed discussion.

2.2 Denoising Techniques for Time-of-Flight Data

We start this section with a discussions of the challenges, which arise with denoising ToF data
compared to denoising standard images.
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• As discussed in [29], the noise in ToF data varies depending on the amplitude of the
recorded signal. A Gaussian distribution with variance proportional to 1

A2(~x) , where A(~x)

is the amplitude of the recorded signal at pixel ~x, provides a efficient approximation, cf. [18].
Standard denoising models, however, often assume identically distributed Gaussian noise
and thus can only be applied after adapting to the locally varying noise variance.

• Due to their low spatial resolution, textures are not as dominant as in standard images and
the issue of texture preservation is less relevant. As a consequence, the texture preserving
properties of non-local methods are of less importance for denoising ToF data.

• To model depth data, it is common to assume piecewise smooth data with salient depth
edges. Depending on the scene recorded, planar surfaces might dominate, which could be
considered in the denoising approach, e.g. by regularization methods which favor piecewise
affine reconstructions. However, one has to keep in mind that the depth maps provided by
ToF cameras are actually the radial distances of the objects to the camera center. We refer
to this as radial depth. As a consequence, surfaces which are flat in 3D are represented
by curved surfaces on the camera grid. Calculating for each pixel the scene depth parallel
to the viewing direction (z-depth) without adapting the (x,y)-pixel positions reduces the
projective distortion, but does not completely compensate it (cf. [32]). An alternative would
be to generate a 3D point cloud from the depth map, project these points onto the image
plane and associate each of these 2D sampling points with its z-depth. The drawback for
such an approach is, that these sampling points in general are no longer equally distributed.
However, in our experiments we experienced that when just using the z-depth stored on the
original pixel grid, the projective distortion of planar surfaces can be neglected compared
to other systematic errors of the ToF systems.

• Finally, we want to stress the fact that the quality of ToF data is evaluated different to
natural images. While for natural images the visual impression often is used for evaluation,
for ToF data their precision is the most important criterion. Denoising methods might
reveal effects that do not significantly change the visual appearance of the outcome, for
example a loss of contrast. On depth maps such effects instead might significantly falsify
the data. Therefore, when selecting appropriate denoising methods for ToF data, care has
to be taken to preserve the accuracy of the depth data.

Let us now give a short overview over the methods discussed in literature for denoising ToF
data.

2.2.1 Image driven Methods

In this subsection, we consider image driven methods, i.e. methods which as input require only
the data, which are to be denoised. Opposed to these are the database-driven (or learning)
methods, which require a training phase with additional input prior to their actual application.

Clustering approaches for ToF denoising have been proposed by Schöner, Moser et al. [48, 33].
Frank et al. [17] have considered adaptive weighted Gaussian as well as median filtering. For these
approaches, they consider different positions within the depth acquisition pipeline. They come
to the conclusion that, among the alternatives considered, adaptive weighted Gaussian filtering
on the final depth in general gives the best results. However, it is not clear if this statement can
be generalized to other denoising methods. Wavelet denoising of ToF data has been considered
by Moser [33] and by Edeler et al. [12, 14]. A popular denoising method used for ToF data
is the already mentioned bilateral filter (see e.g. [50]). A joint- or cross-bilateral filter on both
the depth and intensity data shows good denoising capabilities. We give a short overview over
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the standard and the cross-bilateral filter below. Schöner et al. [47] recently applied anisotropic
diffusion to ToF data. In [32] we considered total variation regularization for ToF denoising.

In order to deal with the low spatial resolution of ToF data, fusion of multiple data sets has
been proposed. In principle, ToF data can be fused with data from any other imaging device.
The most prominent variants are multiple ToF data [49, 35, 13], fusion of ToF with rgb data
(rgbd) [8, 23, 56, 39] and fusion of ToF with stereo data. For the latter, we refer to [36] for a
detailed discussion.

In all these approaches, denoising of the data is also an issue. Denoising techniques considered
within the fusion approaches are for example bilateral TV regularization [13], (cross-)bilateral
filtering [56, 8] and adaptations of non-local means [39, 23].

2.2.2 Database-driven methods

Despite the success of database-driven approaches for image denoising and enhancement, their
applications to ToF data have not been actively explored. This can partially be attributed to
the difficulty in generating the training data: The performance of database-driven algorithms
rely heavily on the availability of large-scale and high-quality data. However, unlike the images,
generating the ground truth data is highly non-trivial, as it requires measuring the 3D geometry
of the scene of interest. One way of generating example pairs is to scan the scene with a laser
scanner as well as with the ToF camera. However, accurate registration between ToF and laser
scan data is necessary [43].

Although we do not evaluate this class of algorithms, recent work breaks the limits of ground
truth generation in this respect. Mac Aodha et al. [1] proposed an algorithm for single-depth
image super-resolution. Similar to existing approaches for image denoising and enhancement,
they adopt a local patch-wise prediction combined with a global image prior where the patch
prediction step takes account of the training data. Unlike typical example-based approaches,
the training examples are generated from synthesized 3D geometries, i.e., an example pair is
generated by capturing a view of a synthesized scene followed by the corresponding degradation
which, in the context super-resolution, is the down-sampling. This approach can facilitate apply-
ing well-developed database-driven image enhancement algorithms to ToF data without having
to set up a laser scanning studio or involve other expensive hardwares.

For denoising ToF data, this approach requires building the corresponding noise model which
may invalidate an important advantage of database-driven approaches: There is no need to
analyze the noise characteristics. Nevertheless, database-driven approaches have certain potential
advantages over conventional approaches that we believe justify future investigation: 1) Sampling
and adding noise to synthetic data is still easier than constructing an algorithm that explicitly
inverts the noise generation process; 2) It is easy to reflect a certain type of a priori knowledge
into database-driven approaches. For instance, if it is known that the scene of interest shows
a specific class of objects (e.g., faces), one could train an algorithm on examples generated
from this specific class. As exemplified in Fig. 1, this strategy can significantly improve the
performance over using generic databases for the case of super-resolution [26] and may show
promise for denoising. This type of a priori knowledge can not be straightforwardly exploited in
conventional approaches.
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(a)

(b)

(c)

Figure 1: The improvement made possible when training on a specific class of objects, here
demonstrated for face image super-resolution (magnification factor 4). (a) bicubic resampling,
(b) super-resolution results of Kim and Kwon’s algorithm trained based on a generic image
database [25], and (c) super-resolution results of Kim et al.’s algorithm trained based on a face
database [26]. We expect a similar behavior for database driven denoising of ToF data.

3 Denoising Strategies

3.1 Methods under Consideration

The methods we consider here use as input some of the data provided by the ToF camera,
which are the raw data, the amplitude, the intensity and/or the depth data. We exemplarily
focus on the bilateral filter and total variation (TV) denoising approach and compare different
modifications of both working on specific subsets of the available data. We start this section
with a review of the standard versions of the bilateral filter and the TV denoising.

3.1.1 Bilateral Filter

The bilateral filter was first introduced by Aurich and Weule in [2] as edge preserving smoothing,
but got the name only in [54] by Tomasi and Manduchi in 1998. The idea of the bilateral filter is
to have a second domain, usually the intensity data, that weakens the smoothing of a standard
Gaussian at intensity discontinuities. A Gaussian weighting in this second domain is commonly
used. The bilateral filter, providing filtered data u from input v, is given as

u( ~x0, v) =
1

aNorm

∫
Ω

v(~x)Gs(‖ ~x0 − ~x‖)Gi(|v( ~x0)− v(~x)|)d~x, (1)
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where Ω ⊂ R2 is the image domain, Gs and Gi are the Gaussian convolution kernels in spatial
and intensity domain, respectively, and aNorm is a normalization factor. Image coordinates are
denoted by ~x.

Regarding ToF-depth data, it is hard to find a suitable σ for the second domain, since the
noise level varies strongly over the image, depending on the intensity or amplitude of different
regions. The results are either smeared edges in bright parts or unsmoothed noise in darker
areas. But the filter can be applied to the four different raw-images, which are basically intensity
images.

Still, there are different ways to apply a bilateral filter to the depth data by incorporating
other information as well. So called joint- or cross-bilateral filters [28] do not use the primary
data to determine the weight in the second domain but calculate it from an additional image,
which is less prone to noise (cf. [15, 41]). In case of a ToF-camera, this second image could be
the intensity or amplitude data. As mentioned already in Section 2.2, a different image with
higher resolution can even be used to achieve super-resolution directly in the denoising step.

An alternative is to use both the intensity or amplitude image and the depth image for a
combined bilateral filter, like in [32]. This method especially preserves edges which are visible
in both data sets. Applying the bilateral filter to the complex representation of the data has
a similar effect. In the complex representation, the angle of each point towards the x-axis
corresponds to the phase shift of the signal, while the distance to the origin is the amplitude. As
a second weighting for the bilateral filter, the distance of points in the complex plane is used.
We finally remark that the bilateral filter can be efficiently implemented on a GPU.

3.1.2 Denoising with Total Variation

Standard Total Variation denoising (the Rudin-Osher-Fatemi (ROF) model [44]) follows the
classical form of a regularization approach, where the objective function to be minimized consists
of a data-fidelity term combined with a regularization term. We describe the approach in a
discrete framework. Let N denote the set of nodes of the pixel grid with grid size h. We denote
image coordinates ~x = (x, y). The optimization problem to be solved to obtain smoothed data
u from noisy input data f is given as

min
u

[(∑
~x∈N

1
2w(~x) (u(~x)− f(~x))

2

)
+ λR(u)

]
, (2)

where
R(u) : =

∑
(x,y)

‖∇u(x, y)‖

=
∑
(x,y)

√(
u(x+ h, y)− u(x, y)

)2
+
(
u(x, y + h)− u(x, y)

)2 (3)

is the regularization term. Regularization parameter λ > 0 controls the amount of smoothing.
w(~x) is a weighting term, which is used to account for the locally varying noise variance. For
independent and identically distributed Gaussian noise with zero mean, one would use a constant
weighting w(~x) ∝ 1

σ2 . After rescaling the parameter λ, w(~x) = 1 can be assumed. For ToF data,
which show a locally varying noise variance proportional to 1

A2 , we propose to use

w(~x) = 1
c min(c, A2(~x)), (4)

where we cut off the weighting function above some constant c > 0, and rescale it to max~x w(~x) =
1, so that the regularization parameter λ can be chosen in the same range as in the case of constant
w(x) = 1.

7



In order to solve the optimization problem (2), we propose to use a primal-dual approach as for
example described in [7]. Such a primal-dual approach is able to handle the non-differentiability
of R(u) and thus leads to a better edge preservation (in terms of sharpness) than for example
methods approximating R(u) by smooth functions. We remark that also primal-dual approaches
can be efficiently implemented on GPUs.

3.2 Positioning within the Processing Pipeline

We start with a short review of depth acquisition process of a ToF camera. For a detailed
overview we refer to [29].

• Four individual raw images Aj(~x) at times τj = π
2fm

j, j = 0, . . . , 3, where fm is the
modulation frequency, are recorded with the camera sensor. Here we denote with ~x the
pixel position. Typically, the measurements are obtained using multiple taps. To deal with
individual tap characteristics, recordings from corresponding taps are averaged [46, Sect.
5.2.]. We assume that Aj(~x) are already the averaged values.

• These raw data are related to the signal A(~x)
2 cos(fmτj + φ(~x)) + I(~x) with modulation

frequency fm, amplitude A(~x), phase shift φ(~x) and intensity I(~x). Optimal values for
A(~x), φ(~x) and I(~x) can be found by minimizing the least-squares error

3∑
j=0

(
A(~x)

2 cos(fmτj + φ(~x)) + I(~x)−Aj(~x)
)2

. (5)

In particular, this optimization problem is independent in each pixel position. The standard
approach is to transform it into a quadratic minimization problem by a change of variables.
The analytic solution of the transformed problem is given as

I(~x) = 1
4

3∑
j=0

Aj(~x),

A(~x) = 1
2

√
(A0(~x)−A2(~x))2 + (A3(~x)−A1(~x))2,

φ(~x) = arctan

(
A3(~x)−A1(~x)

A0(~x)−A2(~x)

) (6)

(cf. [18, 29]). We remark that φ is the phase of the complex-valued signal z with Re(z) =
A0 − A2 and Im(z) = A3 − A1. One of the denoising strategies discussed below considers
smoothing of this complex-valued signal z.

• The depth map is retrieved by

d(~x) =
c

4πfm
φ(~x), (7)

where c is the speed of light.

• Depending on the respective ToF camera, post-processing for correcting systematic errors
is applied.

Let us now turn to the optimal location of the denoising method within the processing pipeline.
The various positions within the pipeline, where total variation denoising and bilateral filtering
can be applied, are
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Smoothing the raw data: We apply the ROF model given by (2) and (3) and the bilateral
filter to each of the four raw images to obtain the filtered images. Denoting the individual results
by Ãj , we then proceed in the processing pipeline with Ãj instead of Aj .

Filtering the complex data: In this approach, we consider the vector valued data

z(~x) =

(
z1(~x)
z2(~x)

)
=

(
A0(~x)−A2(~x)
A3(~x)−A1(~x)

)
. (8)

z1(~x) and z2(~x) can be interpreted as the real and imaginary part of a complex-valued signal
z(~x). We have to keep in mind that the depth d(~x) we are actually interested in is related to the
phase φ(~x) of this complex signal z(~x) = r(~x)eiφ(~x) by (7). For smoothing data z(~x), we consider
again two alternatives, the bilateral filtering on vector-valued data and a TV-based approach
consisting in the minimization of the objective function

1
2

(∑
~x

(‖z1(~x)− (A0(~x)−A2(~x))‖2 + ‖z2(~x)− (A3(~x)−A1(~x))‖2)

)
+ λR(z), (9)

with some regularization parameter λ > 0. As regularization term R(z) we choose isotropic total
variation for vector valued data (see e.g. [3]). The term isotropic here refers to the fact that
the filtering in the complex domain does not favor any direction. As an alternative one could
consider a filtering which smooths the phase stronger than the amplitude of the image. We refer
to such an approach as anisotropic.

Combining the cosine fit with spatial regularization: Here the approach is to find
A(~x), φ(~x) and I(~x) minimizing∑

~x

3∑
j=0

(
A(~x)

2 cos(fmτj + φ(~x)) + I(~x)−Aj(~x)
)2

+R(A, φ, I). (10)

For the regularization term R, we propose to consider the total variation of each of the unknowns
independently, i.e.

R(A, φ, I) = λ1TV (A) + λ2TV (φ) + λ3TV (I), (11)

for some λ1, λ2, λ3 > 0. Note that R(·) couples the local optimization problems considered in
(5). The optimization problem (10) has the advantage that the spatial regularity of the solution
compensates for local distortions of the data Aj . The drawback of (10) is its non-convexity.
The existence of a unique solution is not guaranteed and, even if, its likely that the numerical
optimization gets stuck in a local minimum. As a consequence the retrieved numerical solution
depends on the initialization and might not be the global minimum. The standard approach to
cope with this non-convexity is to find a convex reformulation of the data term in (10) by applying
a change of variables from (A, φ, I) to (z, z, I) = (A2 Z,

A
2 Z, I), where Z := eiφ (dependency on ~x

omitted for simplicity). Then

A
2 cos(fmτj + φ) + I = 1

2 (ei
πj
2 z + e−i

πj
2 z) + I, j = 0, . . . , 3. (12)

Moreover, standard calculus shows that the data term in (10) locally can be split into terms
depending only on either z or I:

3∑
j=0

(
A
2 cos(fmτj + φ) + I −Aj

)2
= T1(z) + T2(I) + T3, (13)
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where

T1(z) := 2(Re(z)− 1
2 (A0 −A2))2 + 2(Im(z)− 1

2 (A3 −A1))2, (14)

T2(I) := 4(I − 1
4

3∑
j=0

Aj)
2, (15)

T3 := 1
4

3∑
j=0

A2
j − 1

2 (A0A1 −A0A2 +A0A3 +A1A2 −A1A3 +A2A3) . (16)

In particular, (13) can be optimized with respect to z and I independently. We remark that
we are mainly interested in z and φ = arg(z). For z we retrieve the complex-valued data term
already considered in (9). However, the regularization terms R(A, φ, I) and R(z) differ. The
strong advantage of (9) compared to (10) with respect to numerical treatment is the strong
convexity of optimization problem. In particular, a unique solution is guaranteed.

Denoising the depth data: Finally, we consider the approach of filtering the depth data
d(~x). This is the most commonly used strategy for denoising ToF data. Here we exemplarily
consider total variation filtering, bilateral filtering and cross-bilateral filtering using both depth
and intensity as input.

We remark that the approaches considered above differ in their numerical effort, which is
approximately proportional on the number of channels (unknown variables) which have to be
filtered. These are four in the case of filtering the raw data, three in the case of the cosine fit, two
for filtering the complex data and one for smoothing the depth map. Thus, regarding numerical
efficiency, the filtering of the depth map is preferable.

3.3 Restoration Quality

Since the basic aim of ToF cameras is to provide the depth of objects in the scene, the most
important issue of filtering ToF data is to preserve the accuracy of the measured depth. This
also concerns the location of depth edges, the depth difference at those edges and the optimal
reconstruction of the slopes of surfaces.

Various techniques exist to improve given denoising schemes. We recall some particular, which
concern the bilateral filter as well as the TV denoising approach. One important modification is
to introduce adaptivity of the smoothing parameters. At edges, these parameters can be reduced
to improve the edge preservation properties of the methods. This requires additional informa-
tion about the edge location. For TV denoising, in particular, adaptivity of the regularization
parameter significantly reduces the unfavorable loss of contrast.

Another way to improve denoising methods by local information is introduce directional
dependency or anisotropy (also being a form of adaptivity). The basic idea goes back to the
anisotropic diffusion approach presented in [55]. The aim is to provide a stronger smoothing
parallel to edges than in normal direction. In the bilateral filter, the convolution mask can
be made directionally depended. In the TV approaches, the regularization term can be made
anisotropic, see e.g. [31]. In both cases, additional information on the location and orientation
is required.

In particular, for TV approaches aiming at denoising depth data it has proven successful to
include second-order regularization terms. Instead of piecewise constant data, these methods
then favor piecewise planar structures.

We remark that with planar surfaces the following issue arises: As already mentioned above,
ToF cameras provide the radial depth. After projection into 2D, planar 3D surfaces show up with

10



(a) Scene (b) Amplitude image (c) Depth map
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Figure 2: The HCI box: recorded scene (left), ToF amplitude (middle) and ToF depth map
(right) recorded wit a PMD Cam Cube 3
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Figure 3: Depth map with color bar clipped from 1.5 to 2.5 m, corresponding ground truth (dark
blue areas are void) and difference image.

a certain curvature. Using the z-depth reduces this projection effect. Thus, the model of piecewise
planar, which second-order TV assumes, is fulfilled only approximately. The most accurate way
to deal with planar surfaces would be to directly work in 3D coordinates and consider the surface
curvature of the objects, with the drawback that the numerical effort increases. However, the
mentioned projection effect is relatively weak compared to systematic errors occurring in ToF
data, such as the multi-path problem. Thus the dominant systematic errors should be tackled
first before accounting for this effect.

For a detailed discussion on how edge information from both intensity/amplitude and depth
data can be used to steer adaptivity, and for details on higher order TV denoising, we refer to
[32].

4 Experiments and Evaluation

In this section we experimentally compare the methods presented in Section 3, applied at different
positions in the processing pipeline.

As test data set, we use a recording of the HCI box 1 with a PMD Cam Cube 3, see Fig. 2. The
box is made of medium-density fiberboard and shows different kinds of planar surfaces. Some of

1http://hci.iwr.uni-heidelberg.de/Benchmarks/document/hcibox/

11



(a) Noisy depth map

6
.5
m

3
.2
5
m

0
m

(b) TV on raw data

6
.5
m

3
.2
5
m

0
m

(c) Cosine fit

6
.5
m

3
.2
5
m

0
m

(d) TV on complex data

6
.5
m

3
.2
5
m

0
m

(e) TV on depth

6
.5
m

3
.2
5
m

0
m

(f) Bilateral filter on raw
data

6
.5
m

3
.2
5
m

0
m

(g) Bilateral filter on
complex data

6
.5
m

3
.2
5
m

0
m

(h) Bilateral filter on
depth

6
.5
m

3
.2
5
m

0
m

(i) Cross-bilateral filter
on depth

6
.5
m

3
.2
5
m

0
m

Figure 4: Applying the bilateral filter and TV denoising at different positions of the processing
pipeline. Besides the accurate restoration of surfaces (cf. MSE in Table 1) the removal of heavy
noise (left region of the data) and a sharp reconstruction of edges is of importance.

the surfaces are covered with paper sheets painted in different gray tones, thus the reflectivity
varies in the respective regions.

For our evaluation, we require ground truth to determine the error of each method considered.
Therefore, we start with a discussion on appropriate ground truth and a description on how it
is obtained. In addition, we refer to [37] for further discussion on this topic.

There is a virtual grid model of the box available, from which, after registration to the real
scene, a synthetic depth map in view of the real camera can be rendered. Comparing, however,
the recorded depth map with the synthetic one, the difference between both reveals not only the
noise of the ToF camera but also all other kinds of systematic errors such as multi-path or an
intensity dependent error. These systematic errors even dominate compared to the noise. Since
the denoising methods considered above are not designed for the removal of all systematic errors,
the difference between their result and the synthetic depth map will still be dominated by the
systematic errors. As a consequence, the denoising capability can not be evaluated upon these
differences.
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Figure 5: Close-ups of the results in Fig. 4, where the bilateral filter and TV denoising are
applied at different positions in the processing pipeline.

We therefore use an alternative approach to obtain ground truth, such that the difference
between ground truth and test data contains mainly noise. Here we make use of the fact that
the HCI box consists of planar surfaces. We select those surfaces which are only weakly effected
by the multi-path error. In particular, the side walls of the HCI box are left out for this reason.

Note that, since the ToF Camera provides the radial depth to the camera center, these
surfaces appear curved in the 2D depth maps. After projecting the 2D data back into 3D, a
linear regression can be applied to approximate the noise free 3D surfaces. In the linear regression,
regions of high noise due to low amplitude are disregarded. The ideal planar surfaces then can
be projected back to retrieve the radial depth of the scene. Fig. 3 shows the result for selected
regions in the depth map. We use the resulting depth in these regions as ground truth.

In order to have a fair comparison of the individual methods, care should be taken to choose
the optimal parameters for each method. For our experiments we retrieve approximately optimal
parameters for each method by means of the ground truth, which in practical applications of
course is not at hand: for each method we seek for optimal parameters on a adaptively refined
grid, so that the mean squared error (MSE) to the ground truth is minimized.

The results of the individual methods applied with these parameters are depicted in Fig. 4.
Close-ups of an inner part of the HCI box are provided in Fig. 5. In addition we provide the
MSE to the ground truth in Table 1.

We observe that the methods act differently on the background regions with strong noise.
The cosine fitting as well as the bilateral filter applied to the depth data do barely smooth these
regions at all. In order to further reduce this noise, a stronger smoothing would be preferable.
Moreover, since the parameters where chosen to optimally reconstruct the planar areas where
ground truth is provided, the restoration of edge regions are not as good as expected. Again,
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increase of the smoothing parameters would improve the regularity of the edges.
We recall that our objective is to compare methods with respect to their position in the

processing pipeline. We therefore consider TV denoising and bilateral filter separately. When
comparing the errors of the TV-based methods in Table 1, the cosine fitting clearly represents an
outlier. This seems to be due to the non-convexity of the considered objective function, so that
the optimization process most likely got stuck in a local minimum. Besides from this outlier, the
TV-based methods show a clear trend. The MSE decreases the more the method is shifted to
the end of the pipeline. Also the reconstruction of edges becomes better, the later the denoising
methods is applied. It turns out, that the optimal strategy is to apply TV denoising at there
very end of the pipeline.

Concerning bilateral filter, the smallest MSE is achieved by applying the bilateral filter to the
four raw channels. The result, however, reveals some distorted pixels, see Figs. 4 and 5. These
distorted pixels result from the phase ambiguity after evaluating arctan(·). These distortions
can be corrected by subsequently applying a median filter, which reduces the MSE further to
1.3524 · 10−4. The second best result is provided by the bilateral filter applied to the depth
data. Interestingly, the standard bilateral filter on the depth data slightly outperforms the
cross-bilateral filter in terms of MSE.

Since the ground truth data only cover a part of the data set, it is inevitable to also compare
the different variants in the remaining parts, especially at edges. Each of the three methods
mentioned above shows a different kind of artifacts: the bilateral filter applied to the raw data
shows some artifacts at the edges of the staircase, which might be due to flying pixels. The
bilateral filter applied to the depth data in some regions (e.g. stairs) shows an over-smoothing,
while in other regions (ramp) some noise remains. Finally, the cross-bilateral filter on the depth
data provides a regular reconstruction of the true depth edges, while in the same time pronouncing
false intensity-related edges. Our general conclusion is, that these three variants are competitive.

We remark that the above quantitative results are biased by the fact that we have chosen
only one test scenario and that only partial ground truth is available. This stresses the need for
larger data sets with highly accurate ground truth as well as a good error measure for evaluating
the restoration of edges.

As mentioned in Section 3.3, additional strategies can be applied to improve the standard
methods considered so far. We exemplarily consider the total variation denoising of the depth
data to illustrate the potential of improvement of the methods considered so far. For TV denois-
ing, in order to reduce the loss of contrast and prevent stair-casing, anisotropic total variation
of first- and second-order can be applied. We refer to our work [45] for details on this approach.
The result of this method is shown in Fig. 6. It achieves an MSE of 1.5105 · 10−4 compared to
1.5862 · 10−4 for the standard TV approach. For the bilateral filter corresponding modifications
can be considered.

5 Conclusion

We started with an overview of state-of-the-art image denoising techniques as well as denoising
algorithms especially designed for ToF data. Both image-driven and database-driven approaches
were considered. As the central theme of this paper, we discussed two alternatives for positioning
the denoising algorithms in the data processing pipeline. Two well-established exemplary meth-
ods were considered and experimentally evaluated for this purpose: One is the bilateral filtering
and the other is the total variation-based denoising. It turned out that for TV denoising the
optimal position is at the end of the processing pipeline. For the bilateral filter, we found that
applying it to the raw channels and performing a subsequent median filter provides the smallest
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Method MSE (·10−4)
Bilateral filter on raw data Aj(x) 1.4871
Bilateral filter on raw data plus median filter 1.3524
Bilateral filter on complex data z(x) 1.5444
Bilateral filter on depth map d(x) 1.5391
Cross bilateral filter on depth map d(x) 1.5819
TV denoising on raw data Aj(x) 1.6699
Non-convex cosine fit 7.1208
TV denoising on complex data z(x) 1.6320
TV denoising on depth map d(x) 1.5862

Table 1: Mean squared error (MSE) to the ground truth (cf. Fig. 3) of the methods under
consideration. The MSE strongly varies depending on the position within the processing pipeline.
The bilateral filter on raw data with subsequent median filtering gives the smallest MSE.

quantitative error. Qualitatively, it competes with applying the bilateral and the cross-bilateral
filter to the depth data. The general conclusion is, that the optimal position depends on the
considered denoising method. As a consequence, for any newly introduced denoising technique,
finding its optimal position within the pipeline is an issue which should be discussed along with
the method.
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Systems. Dissertation, IWR, Fakultät f ür Physik und Astronomie, Univ. Heidelberg, 2011.
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