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Abstract. We consider solution-driven adaptive variants of Total Vari-
ation, in which the adaptivity is introduced as a fixed point problem. We
provide existence theory for such fixed points in the continuous domain.
For the applications of image denoising, deblurring and inpainting, we
provide experiments which demonstrate that our approach in most cases
outperforms state-of-the-art regularization approaches.
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1 Introduction

In recent years, several adaptive variants of Total Variation (TV) for the task
of image restoration have been proposed, see e.g. [3, 7, 8, 11–13, 16, 20]. When
adaptivity is introduced, there are several alternatives how to provide the in-
formation which is required to steer the adaptivity. The standard approach is
to use the (pre-smoothed) input data to estimate prominent image structures
(referred to as data-driven adaptivity in the following). Another way is to let the
adaptivity depend directly on the solution (solution-driven adaptivity). In this
paper we follow an approach which we have proposed in [14]: The adaptivity is
defined based on an arbitrary input image v. Fixing v yields a convex optimiza-
tion problem with uniquely determined minimizer u. One then seeks for a fixed
point of the mapping from v to u, which makes the adaptivity solution-driven.

In [15, 16] we have shown that in the discrete setting under sufficient condi-
tions a fixed point of this approach exists. Uniqueness can also be obtained with
more restrictive assumptions.

In the work presented here, we consider the continuous setting of this
ansatz, for which we provide existence results for a class of adaptive TV regu-
larizers. Such theory has not been provided in literature so far. As exemplary
applications we consider image denoising, non-blind deblurring and inpainting.
Our approach, however, is applicable as regularization method for any inverse
problem under the conditions retrieved in this paper.

2 Motivation

We start with the classical ROF functional [17] for denoising images, in which
the data to be denoised are represented as a function f ∈ L2(Ω) for some
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open bounded domain Ω ⊂ Rd with Lipschitz boundary. The denoised image is
represented by a function u lying in L2(Ω)∩BV (Ω), where BV (Ω) is the space
of functions of bounded variation [18]. Function u is obtained as minimizer of
the strictly convex functional

F(u; f) := S(u; f) + αTV(u), (1)

where S(u; f) := 1
2‖u− f‖

2
L2(Ω) is the data term, TV (u) := sup{

∫
Ω

divϕu dL |
ϕ ∈ C1

c (Ω,Rd), ‖ϕ(x)‖2 ≤ 1} is the total-variation semi-norm and α > 0 is the
regularization strength. We generalize this approach by replacing αTV(u) by
an regularization term Rv(u), i.e. Fv(u; f) := 1

2‖u− f‖
2
L2 +Rv(u), where v is a

function steering the regularization. We assume an Rv(u) of the form

Rv(u) := sup{
∫
Ω

u(x) div(A(x, v)ϕ(x)) dL | ϕ ∈ D}, (2)

where D := {C1
c (Ω,Rd), ‖ϕ(x)‖2 ≤ 1} and A(x, v) is continuously differentiable

w.r.t. x and maps to the space of symmetric matrices.

Example 1. Let v ∈ C1(Ω,R). We consider an adaptive TV regularization, where
the regularization strength α is reduced at locations, where the gradient of v
is high. To this end, we set A(x, v) = α(x, v) Id with α(x, v) = m̃ax(α0(1 −
κ‖∇v(x)‖2), ε0), where m̃ax is a smoothed version of the max operator and
ε0, α0 > 0 and κ ≥ 0. �

Let us assume that the functional Fv(u; f) attains a unique minimizer u. We
introduce the short notation u := T (v; f) := arg minu Fv(u; f).

In the following, we assume that v is also an image. A special case would be
to set v = f (or a pre-smoothed version of f to be robust against noise). We
refer to such an approach as data-driven adaptivity. Here, we follow a different
approach by searching for a fixed point u∗ of the mapping v → T (v; f). For
such a fixed point u∗ = u = v, the regularization term becomes Ru∗(u), i.e. the
adaptivity is determined by the solution u∗ itself. For our example, this means
that the adaptivity is reduced at edges of u∗. We refer to this approach as a
solution-driven adaptivity. It has to be noted that this approach is in general
not equivalent to solving the non-convex problem arg minu Fu(u; f).

Two open issues remain, which are the well-posedness of the problem u =
arg minFv(u; f) (and operator T (v; f)), and the existence of a fixed point u∗ =
u = v of T . We address both issues in the next section.

3 Theory

In the following, for the simplicity of notation, we omit the dependency of data
term S, functional F and operator T on the input data f . Moreover, we omit
the argument x of functions, if it is clear from the context. We generalize the
variational problem by considering a larger class of data terms S(u). The pre-
sentation of our approach concentrates on the two-dimensional case Ω ⊂ R2.
The generalization to a d-dimensional domain is straightforward.
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First, we generalize the approach from last section to general inverse problems
by considering arbitrary data terms S(u) with certain conditions stated below
and additional constraints u ∈ C, where C ⊂ BV (Ω) is convex and weakly closed
in L2(Ω). Second, we state operator T more precisely:

T : L2(Ω)→ BV (Ω) ∩ L2(Ω) T (v) := arg min
u∈C

Fv(u). (3)

3.1 Well-posedness of operator T

Remark 1. Recall that Ω ⊂ Rd is open bounded with Lipschitz boundary. In
the case d = 2, on which we focus here, the embedding from BV (Ω) to L2(Ω)
is continuous [18, Thm 9.78]. Thus Fv(u) is well-defined on BV (Ω). In the case
d > 2 we have to restrict the optimization of Fv(u) to the space L2(Ω)∩BV (Ω).

Assumption 1 (i) S : L2(Ω) → R is strictly convex and lower semi-contin-
uous w.r.t. the weak convergence in L2(Ω).

(ii) There exist constants c1, c2 > 0 such that ‖u‖L2 ≤ c1S(u) + c2 for any
u ∈ C.

(iii) Let λi(x, v), i = 1, 2, be the eigenvalues of A(x, v). We assume that there
exist Cmin, Cmax > 0 such that Cmin ≤ λi(x, v) ≤ Cmax, i = 1, 2.

Proposition 1. For v ∈ L2(Ω), Fv(·) has a unique minimizer u ∈ C ⊂ BV (Ω).
Moreover, there exists an Rmax ≥ 0 independent from v, such that ‖u‖BV ≤
Rmax. Thus T (v) : L2(Ω)→ U := {u ∈ C | ‖u‖BV ≤ Rmax, }, is well defined.

Remark 2 (Sketch of the proof of Prop. 1). The proof follows the standard proof
for convex minimization problems. Starting with a minimizing sequence, one
first shows that the sequence is bounded in BV (Ω): Using Ass. 1(iii), one can
prove that CminTV (u) ≤ R(u, v). Together with Ass. 1(ii) boundedness of the
sequence follows. We therefore can find a subsequence weakly ∗ converging to
some u ∈ BV (Ω), also converging weakly in L2(Ω). Analogously to the proof
of Thm. 1 in [9, Sect. 5.2.1], we can show that Rv(u) is weakly ∗ lower semi-
continuous. This requires the upper bound Cmax from Ass. 1(iii). Together with
Ass. 1(i) we have that Fv(u) is weakly ∗ lower semi-continuous, and thus u is a
minimizer. From the strict convexity of Fv(u) it follows that u is unique.

3.2 Existence of a fixed point

Assumption 2 A(x, v) is continuously differentiable w.r.t. x and Lipschitz-
continuous with constant w.r.t. v. Moreover, for any u ∈ C∞(Ω) and v ∈ L1(Ω)
there exists a function a(x, u, v) continuous in x such that

sup
ϕ∈D

∫
Ω

ϕ(x)>A(x, v)∇u(x) dL =

∫
Ω

a(x, u, v)‖∇u(x)‖2 dL, (4)

where a(x, u, v) is Lipschitz-continuous w.r.t. v: there exists a constant Cl > 0
independent from u and v such that

‖a(x, u, v1)− a(x, u, v2)‖L∞ ≤ Cl‖v1 − v2‖L1 . (5)
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Theorem 1. Let Ass. 1 and 2 be satisfied. Then, there exists a fixed point u∗

of T (v), i.e. u∗ minimizes Fu∗(u).

The proof of Thm.1 requires the following definition and proposition.

Definition 1. We consider the weak topology in L2(Ω) (cf. [2]). We call F :
L2(Ω)→ L2(Ω) weakly upper semi-continuous if for any weakly closed subset B
of im(F) the set F−1(B) is weakly closed.

Proposition 2. The mapping v 7→ T (v) from C to U ⊂ C ⊂ L2(Ω) is weakly
upper semi-continuous w.r.t. the weak topology in L2(Ω).

The proof of Prop. 2 will be given below. First we state two required lemmas,
the proofs of which are provided in the appendix.

Lemma 1. Let U be a bounded subset of BV (Ω) and let vk → v in L1(Ω). Then,
we have Rvk(u)→ Rv(u) and Fvk(u)→ Fv(u) uniformly for every u ∈ U .

Lemma 2. For vk → v0 in L1(Ω) and uk := T (vk) := arg minu Fvk(u):

lim inf
k→∞

Fv0(uk) ≤ lim sup
k→∞

Fvk(uk). (6)

Proof (Proof of Proposition 2). Let B be a weakly closed subset of U (recall
that im(T ) ⊂ U). Let (vk)k be a sequence in T−1(B) ⊂ V weakly converging
in L2(Ω) to some v0 ∈ V , i.e. there exists a sequence (uk)k ∈ B such that

uk = T (vk), and vk
L2

⇀ v0. Let u0 := T (v0). Since U is weakly ∗ pre-compact in
BV (Ω) and weakly in L2(Ω), there exists a subsequence also denoted by (uk)k,

such that uk
∗
⇀ u for some u ∈ BVΩ and uk

L2

⇀ u. Since B is weakly closed in
L2(Ω), we find u ∈ B. Next, we show that u = u0, i.e. u is the unique minimizer
of Fv0(·). Since the embedding from L2(Ω) to L1(Ω) is compact, we can find a
subsequence (vk

′
)k′ , of (vk)k, which converges to v strongly in L1(Ω). Using the

weakly ∗ lower semi-continuity of Fv0 (cf. Rem. 2) together with Lem. 2 we find

0 ≤ Fv0(u)−Fv0(u0)≤ lim inf
k′→∞

Fv0(uk
′
)−Fv0(u0)

≤ lim sup
k′→∞

Fvk′ (u
k′)−Fv0(u0).

(7)

Recall that uk
′
is the minimizer of Fvk′ (·) for all k′ ≥ 0, which induces Fvk′ (uk

′
) ≤

Fvk′ (u0). Using this fact, we obtain from (7) that

0 ≤ Fv0(u)−Fv0(u0) ≤ lim sup
k′→∞

Fvk′ (u
0)−Fv0(u0). (8)

Lemma 1 guarantees that the r.h.s. of (8) tends to zero, thus Fv0(u) = Fv0(u0).
On the other hand, u0 by definition is the unique minimizer of Fv0(·), from
which u = u0 follows. Since u ∈ B and u = u0 = T (v0), we have shown that
v0 ∈ T−1(B) and thus T−1(B) is weakly closed. ut
Proof (Proof of Thm. 1). The claim follows from Theorem 2.3. in [1], since C is
convex and closed in L2(Ω) and v → T (v) is weakly compact in L2(Ω) (it maps
to the pre-compact set U , thus T (B) is pre-compact for any B ⊂ C) and weakly
upper semi-continuous in L2(Ω) (Prop. 2). ut
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Fig. 1. Test images used for evaluation. Top row – denoising: with additive Gaussian
noise (zero mean, standard deviation 0.1). Middle row – deblurring: blurred images
with Gaussian noise (zero mean, standard deviation 0.01). Bottom row – inpainting:
white regions mark the regions to be inpainted.

4 Image Restortation

Data terms We consider the applications of denoising, non-blind deblurring and
inpatining. In the case of denoising, we utilize the standard L2 data term, which
is strictly convex. In the case of deblurring, we assume a kernel K with bounded
support, such that u ∈ L2(Ω) leads to data f(x) := (K ∗ u)(x) in L2(Ω0),
Ω0 ⊂ Ω. We set S(u) := 1

2‖K ∗ u − f‖L2(Ω0). By an additional regularization
of the data term, i.e. by adding ε‖u‖2L2(Ω) with small ε > 0, we assert strict

convexity of F(u). For inpainting, we consider the domain Ω0 ⊂ Ω on which the
data f are known and set C := {u ∈ BV (Ω) | u = f a.e. on Ω0}. Moreover, to
obtain a strictly convex problem we choose S(u) = ε‖u‖2

L2(Ω\Ω0)
. In all three

applications Ass 1(i) and (ii) are satisfied.

Adaptivity We consider two examples of adaptive TV regularization. In both,
we steer the adaptivity by choosing appropriate functions A(x, v).

First, we revisit Example 1, where we locally adapt the regularization strength.
Assuming that v lies in BV (Ω), since it is expected to be the fixed point of op-
erator T , we face the problem that the gradient of v cannot be interpreted as
a function on Ω. To circumvent this problem, we introduce a pre-smoothing
of v as follows: Let Kσ(x) be a Gaussian kernel with variance σ2. We define
vσ := Kσ ∗ v, where ∗ is the convolution operator. We choose suitable boundary
conditions to accommodate to the fact that v is only defined on Ω. We then set

A(x, v) := α(x, vσ) Id, with α(x, vσ) := m̃ax(α0(1− κ‖∇vσ‖2), ε0), (9)

where m̃ax is a smoothed version of the max-operator and α0, ε0 > 0, κ ≥ 0.
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Method Train Cameraman Lena Peppers Boat

D
en

o
is

in
g std. TV [17] 0.789 0.808 0.793 0.794 0.718

TGV [4] 0.791 0.814 0.798 0.810 0.723
BM3D [6] 0.840 0.856 0.845 0.834 0.762
adapt. TV (dd) 0.789 0.813 0.793 0.794 0.718
adapt. TV (sd) 0.790 (4) 0.822 (4) 0.793 (3) 0.794 (4) 0.718 (4)
anisotr. TV(dd) 0.793 0.808 0.796 0.794 0.718
anisotr. TV(sd) 0.803 (4) 0.820 (4) 0.819 (4) 0.798 (4) 0.723 (4)

D
eb

lu
rr

in
g std. TV 0.774 0.766 0.760 0.795 0.644

TGV 0.775 0.747 0.749 0.799 0.691
Schmidt [19] 0.571 0.612 0.697 0.682 0.705
adapt. TV(dd) 0.774 0.757 0.762 0.794 0.631
adapt. TV(sd) 0.813 (3) 0.829 (4) 0.808 (2) 0.811 (2) 0.715 (4)
anisotr. TV(dd) 0.774 0.783 0.762 0.797 0.660
anisotr. TV(sd) 0.839 (4) 0.841 (4) 0.848 (4) 0.864 (4) 0.776 (4)

In
p
a
in

ti
n
g std. TV 0.930 0.945 0.940 0.951 0.933

TGV 0.958 0.958 0.958 0.963 0.954
Garcia [10] 0.957 0.966 0.966 0.969 0.961
adapt. TV(dd) 0.938 0.945 0.940 0.951 0.933
adapt. TV(sd) 0.972 (4) 0.969 (4) 0.957 (4) 0.964 (4) 0.950 (4)
anisotr. TV(dd) 0.947 0.946 0.942 0.952 0.936
anisotr. TV(sd) 0.976 (4) 0.973 (4) 0.971 (4) 0.968 (4) 0.958 (4)

Table 1. Similarity [21] to ground truth for the different applications, methods and test
images. (dd=data-driven, sd= solution-driven, numbers in brackets are the iterations
of the outer loop.) Except for the application of denoising, our approaches in most
cases provide the best results compared to the other methods.

We refer to this example as solution-driven adaptive TV regularization. Note
that α(x) ∈ [ε0, α0], such that Assumption 1(iii) is satisfied. The following lemma
shows, that Assumption 2 also holds.

Lemma 3. Let A(x, v) be defined as in (9). Then, Assumption 2 is satisfied
with a(x, u, v) = α(x, vσ).

Proof. For u ∈ C∞(Ω) we have

sup
ϕ∈D

∫
Ω

ϕ>A(v)∇u dL = sup
ϕ∈D

∫
Ω

ϕ>α(x, v)∇u(x) dL ≤
∫
Ω

α(x, v)‖∇u(x)‖2 dL.

(10)
We show equality in (10). Let ϕ(x) := ∇u(x)/‖∇u(x)‖2 if ∇u(x) 6= 0 and
ϕ(x) := 0 otherwise. Then ‖∇u‖2 = ϕ>∇u. Let ϕε ∈ C∞c (Ω,R2) → ϕ in
L2(Ω;R2) and∫
Ω

∣∣ϕ>ε α(x, v)∇u− α(x, v)‖∇u‖2
∣∣ dL ≤ ‖α(x, v)‖L∞ ‖ϕε − ϕ‖L2‖∇u‖L2 → 0.

(11)
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(a) standard TV [17] (b) TGV [4] (c) data-driven adapt. TV

(d) sol.-driven adapt. TV (e) data-driven aniso. TV (f) sol.-driven aniso. TV

Fig. 2. Deblurring: best performing methods on the cameraman image. The solution-
driven variants outperform the data-driven variants. Solution-driven anisotropic TV
gives the best result.

The Lipschitz continuity of v → α(x, v) follows form the continuous differentia-
bility of α w.r.t. vσ together with ‖∇(v1)σ − ∇(v2)σ‖L∞ ≤ C‖v1 − v2‖L1 as a
property of convolutions. ut

Our second example is a solution-driven anisotropic TV variant:

A(x, v) := α(x)r(x)r(x)> + β(x)(r⊥(x))(r⊥(x))> (12)

for some vector field r(x) : Ω → R2 and scalar functions α(x), β(x) : Ω → R+. To
determine r(x) we consider the structure tensor Jρ(vσ) := (∇vσ∇v>σ )ρ, where
(M)ρ denotes the elementwise convolution of matrix M with kernel Kρ. Let
µ1(x) ≥ µ2(x) ≥ 0 be the eigenvalues of Jρ(vσ)(x). We choose r(x) as the
normalized eigenvector to eigenvalue µ1(x). α(x) and β(x) are chosen as

α(x) = g(µ1(x)− µ2(x))α0 + (1− g(µ1(x)− µ2(x)))β0, β(x) = β0,

with g(s) = min(c · s, 1), c > 0. For cmin := min{α0, β0}, Cmax := max{α0, β0}
we have 0 < cmin ≤ α(x), β(x) ≤ Cmax <∞, so that Ass. 1(iii) follows. Due to
space constraints we omit the proof that Assumption 2 is satisfied.
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(a) Garcia [10] (b) TGV [4] (c) data-driven adapt. TV

(d) sol.-driven adapt. TV (e) data-driven aniso. TV (f) sol.-driven aniso. TV

Fig. 3. Inpainting: best performing methods on the cameraman image. The solution-
driven variants outperform the data-driven variants. Solution-driven anisotropic TV
gives the best result.

5 Experiments

Numerically, we solve the problem of finding a fixed point of T by two nested iter-
ations. In the outer iteration, function v is updated; in the inner iteration we solve
the discretized convex problem arg minu Fv(u) with a primal-dual method [5].

We consider three different applications: denoising, non-blind deblurring and
inpainting. As test images, we consider the five images depicted in Fig. 1. (Train
image by courtesy of Kristian Bredies.) All ground truth images are scaled to
the range [0, 1]. We compare our method to regularization with standard TV,
Total Generalized Variation (TGV) [4] and the data-driven variants (i.e. us-
ing T (f), where f are the input data) of our approach. Moreover, we compare
with BM3D [6] for denoising, the method by Schmidt [19] for deblurring and
to Garcia’s method [10] for inpainting. For comparison, we utilize the similar-
ity measure from [21] applied to result and ground truth. To find the optimal
parameters for each method w.r.t this measure we applied a hierarchical grid
search. The similarity measures for each application and each method are listed
in Table 3.2. For the task of denoising, we observe that we cannot cope with
the BM3D method, but obtain better results than the other regularization ap-
proaches. Concerning deblurring and inpainting, we obtain in most cases the
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best results compared to the other methods. For deblurring and inpainting, the
results of the best performing methods on the cameraman image are depicted in
Figs. 2 and 3. (The other results are omitted due to space constraints.)

6 Conclusion

We have considered solution-driven adaptive variants of Total Variation. In our
ansatz the adaptivity leads to a fixed point problem, for which we provided
existence theory. Our experiments demonstrated for the applications of image
denoising, deblurring and inpainting, that our approach in most cases outper-
forms state-of-the-art regularization approaches. In future work we will study
the issue of uniqueness of fixed points in the continuous setting.

Appendix

The following lemma is required in the proof of Lemma 1.

Lemma 4. For any u ∈ BV (Ω) there exists (uk)k ∈ C∞(Ω) such that uk
L1

→ u,
TV(uk)→ TV (u) and Rvi(uk)→ Rvi(u) simultaneously for a finite set of {vi}i.

Proof. For fixed v the proof follows the proof of [9, Thm. 2, Sect. 5.2], with some
modifications. Recall D = {C1

c (Ω,R2), ‖ϕ(x)‖2 ≤ 1}. Let ε > 0 be fixed. For a
m ∈ N,m > 0 and k ∈ N we define open sets Ωk := {x ∈ Ω | dist(x, ∂Ω) > 1

m+k}
and choose m large enough to guarantee

TV(u)(Ω \Ω1) < ε, (13)

where TV(u)(B) is the variation measure of u evaluated on the set B. SetΩ0 := ∅
and define Vk := Ωk+1 \ Ωk−1. Please note that each x ∈ Ω is contained in at
most three sets Vk. Moreover, let {ζk}∞k=1 be a sequence of smooth functions with
ζk ∈ C∞c (Vk), 0 ≤ ζk ≤ 1 and

∑∞
k=1 ζk = 1 on Ω. Let η be a mollifier as in [9,

Sect. 4.2.1]). For each k, select εk > 0 small enough such that for ηεk := 1
ε2k
η( xεk )

supp(ηεk ∗ (uζk)) ⊂ Vk,
∫
Ω

|ηεk ∗ (uζk)− uζk| dL <
ε

2k
,∫

Ω

‖ηεk ∗ (u∇ζk)− u∇ζk‖2 dL <
ε

2k
.

(14)

Define uε :=
∑∞
k=1 ηεk ∗ (uζk). In this sum there are only finitely many terms,

which are non-zero on a neighborhood of each x ∈ Ω. Thus, uε ∈ C∞(Ω). Since
also u =

∑∞
k=1 uζk, we find from (14) that

‖uε − u‖L1(Ω) ≤
∞∑
k=1

∫
Ω

|ηεk ∗ (uζk)− uζk| dL < ε. (15)
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Thus, uε → u in L1(Ω). Moreover, for ϕ ∈ D, we have∫
Ω

uε divϕ dL =

∫
Ω

u

(∑
k

ζk div(ηεk ∗ ϕ)

)
dL ≤ 3 TV(u), (16)

where we used that for every x ∈ Ω there exist at most three ζk(x) > 0. Taking

the supremum over all such ϕ we find TV(uε) ≤ 3 TV(u) < ∞. Thus uε
∗
⇀ u.

Then, due to the weak ∗ lower semi-continuity of Rv(u) (cf. Rem. 2) we have

Rv(u) ≤ lim inf
ε→0

Rv(uε). (17)

For any ϕ ∈ D∫
Ω

uε div(A(v)ϕ) dL =

∞∑
k=1

∫
Ω

(ηεk ∗ (uζk)) div(A(v)ϕ) dL

=

∞∑
k=1

∫
Ω

uζk div(ηεk ∗ (A(v)ϕ)) dL

=

∞∑
k=1

∫
Ω

udiv(ζk(ηεk ∗ (A(v)ϕ))) dL︸ ︷︷ ︸
:=Iε1

−
∞∑
k=1

∫
Ω

ϕ>A(v)(ηεk ∗ (u∇ζk)− u∇ζk) dL︸ ︷︷ ︸
=:Iε2

,

(18)
where we used the fact

∑∞
k=1∇ζk = 0 on Ω. Since ‖A(x, v)ϕ(x)‖2 ≤ Cmax, we

find that ‖ζk(x)(ηεk ∗ (A(v)ϕ))(x)‖2 ≤ Cmax. Thus, we can bound Iε1 by

|Iε1 | =
∣∣∫
Ω

udiv(ζ1(ηε1 ∗ (A(v)ϕ))) dL+

∞∑
k=2

∫
Ω

udiv(ζk(ηεk ∗ (A(v)ϕ))) dL
∣∣

≤ Rv(u) + CηL(v)ε+

∞∑
k=2

Cmax TV(u)(Vk),

(19)
where L(v) is the Lipschitz-constant of x→ A(x, v) and where we use that

‖ηεk ∗ (A(v)ϕ)−A(v)(ηεk ∗ ϕ)‖ ≤ CηL(v)‖ϕ‖L∞ε (20)

(which follows from standard calculus) with Cη > 0 only depending on η.
Since each point in Ω belongs to at most three sets Vk, together with Vk ⊂

Ω \Ω1 and (13), (19) can be bounded by

|Iε1 | ≤ Rv(u) + CηL(v)ε+ 3Cmax TV(u)(Vk) < Rv(u) + (3Cmax + CηL(v))ε.
(21)

Since ‖A(x, v)ϕ(x)‖2 ≤ Cmax we obtain from (14) that

|Iε2 | = |
∞∑
k=1

∫
Ω

ϕ>A(v)(ηεk ∗(u∇ζk)−u∇ζk) dL| ≤ Cmax
∞∑
k=1

ε

2k
= Cmaxε. (22)
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Combining (18), (21) and (22), we find∫
Ω

uε div(A(v)ϕ) dL < Rv(u) + (4Cmax + CηL(v))ε. (23)

Taking in (23) the supremum over all ϕ ∈ D, we obtain Rv(uε) < Rv(u) +
(4Cmax + CηL(v))ε. Together with (17) we have

|Rv(uε)−Rv(u)| < (4Cmax + CηL(v))ε (24)

for ε small enough. Since the choice of Ωk, Vk, εk, ζk and ηεk was independent
from v, we get a simultaneous convergence for a finite set of vii. Moreover, as
we can express TV(u) as Rv(u) with A(v) = Id, (24) provides also |TV(uε) −
TV(u)| < (4Cmax + Cη)ε. ut

Proof (of Lemma 1). We show that for arbitrary u, v1, v2 ∈ BV (Ω)

|Rv1(u)−Rv2(u)| ≤ ClRmax ‖v1 − v2‖L1 , (25)

from which the claim for Rv(u) follows. Consider first a fixed u ∈ C∞(Ω). Then,
by Assumption 2

|Rv1(u)−Rv2(u)| =
∫
Ω

|a(x, u, v1)− a(x, u, v2)| ‖∇u(x)‖2 dL

≤ ‖a(x, u, v1)− a(x, u, v2)‖L∞ TV(u) ≤ Cl‖v1 − v2‖L1 TV(u).

(26)

Now, let u ∈ U be arbitrary. Using Lemma 4 we can find for any ε > 0 a function
ũ ∈ C∞(Ω) such that

|Rvi(u)−Rvi(ũ)| ≤ ε for i = 1, 2, |TV(u)− TV(ũ)| ≤ ε. (27)

Then,

|Rv1(u)−Rv2(u)|
(27)

≤ |Rv1(ũ)−Rv2(ũ)|+ 2ε
(26)

≤ Cl‖v1 − v2‖L1 TV(ũ) + 2ε

(27)

≤ Cl‖v1 − v2‖L1(TV(u) + ε) + 2ε
u∈U
≤ Cl‖v1 − v2‖L1(Rmax + ε) + 2ε.

Since we can find ũ such that ε becomes arbitrary small, (25) follows for fixed u.
Since the r.h.s. of (25) does not depend on u, we achieve an uniform convergence
of Rvk(·) → Rv(·) on U for vk → v in L1(Ω). Since Rv(u) and Fv(u) differ by
S(u) not depending on v, the uniform convergence Fvk(·)→ Fv(·) follows. ut

Proof (of Lemma 2). Let vk → v0 in L1(Ω). For the sequence uk := T (vk), let
lim infk→∞ Fv0(uk) := c. For any ε > 0 Lemma 1 guarantees the existence of a
K > 0 such that |Fvk(u)− Fv0(u)| ≤ ε

2 for all u ∈ U and all k ≥ K. Moreover,

we can find a k′ ≥ K such that |Fv0(uk
′
)− c| ≤ ε

2 . From both together, we find

|Fvk′ (u
k′)− c| ≤ |Fvk′ (u

k′)−Fv0(uk
′
)|+ |Fv0(uk

′
)− c| ≤ ε. (28)

In other words, there exists a sequence k′ → ∞, such that Fvk′ (uk
′
) → c and

thus lim infk→∞ Fv0(uk) = c ≤ lim supk→∞ Fvk(uk). ut
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