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Abstract:

In the Institute of Botany at the University of Innsbruck pollen samples have been collected
continuously 24 hours a day since 1977. With hindsight the statistical evaluation of the com-
plete set of samples would allow important insights into the air quality in the Innsbruck region
over the past 30 years. This region is exposed to increased air pollution due to the high traffic
concentration on the Inn valley and Brenner motor-ways. The aim of this project is an auto-
mated analysis of the samples with respect to airborne particles using digital 1maging methods
to analyze and recognize number and size of the particles. Scanning the sample surface, saving
the digital image data, analyzing the airborne particles and statistical processing of the col-
lected aerobiological data is intended to be a fully automated process. The complete instrument
control and analysis should be implemented within a single software environment on a personal

computer.
1 Introduction

Small airborne dust particles, known as particulate matter (PM), are a serious health concern
when inhaled since they can penetrate deeply into the respiratory tract where they accumulate.
In medical research, particular attention has been devoted to particles less than 10 micrometers
in diameter (PM;o) which are supposed to be responsible to aggravated cardiac and respiratory
(heart and lung) diseases in addition to increased cancer risk and premature death. These
small particles are a product of combustion processes, especially of diesel fuel. They are due to
air pollutant emission by a number of sources from industrial power plants and motor-vehicles.
Other sources comprise windblown dust, brake lining and tire wear ([3],[9]). To analyze the
evolution of air pollutant caused by PM;, aerobiological data preserved by the Institut of

Botany in Innsbruck over many years are available.

In section 2 a methodological background of the preparation technique used for pollen samples
is given. In section 3 the current algorithm for recognizing of the particles is explained,

including pre- and postprocessing steps. Section 4 presents results of a numerical classification.



And in section 5 we discuss the applicability of a beta-version of our algorithm for particle
detection.

2 Background

The Institute of Botany at the University of Innsbruck, led by Prof. Dr. Bortenschlager, in a
joint project with the Pollen Information Service Tyrol provides data on the present airborne
pollen dispersion and analyzes the pollen flight for regions at different altitudes in Tyrol ([1]).
These informations should help people suffering from pollen allergy to avoid the contact with
those particles as far as possible. The record of pollen emission measurements started 1977
with three pollen traps located in the valley areas of Innsbruck, Worgl and Imst. 1980 three
additional pollen traps were installed in Obergurgl, Kiihtai and Galtiir. At the present in
Tyrol 11 pollen traps are installed. The pollen records are performed using the Burkard
pollen trap ([11]), which absorbs 10 liters of air per minute, corresponding approximately to
the human inhalation, through a narrow orifice of 2mmx14mm. The airborne particles are
collected on an adhesive plastic tape, mounted on a clockwork-driven drum, which rotates
once a week at the speed of 2 mm per hour. The exposed part of the tape is removed from the
drum and is cut into daily periods, corresponding to 48 mm segments with a sampling rate
of 1 hour time resolution. After embedding the tape onto standard microscope slides with
a Gelvatol solution, the daily samples are analyzed in a conventional light microscope. The
archived areobiological samples of the Institut of Botany over many years and the high trap
collection efficiency, particularly for particles less than 10 ym in diameter, makes the effort to

reanalyze the sample sets with respect to PM;y more than self-evident.
3 Strategy and Algorithm

The beta-version of our detection algorithm developed for identifying and counting airborne

dust particles less than 10 ym in diameter consists mainly in the following subsystems:

1. Microscopic scanning of the biological samples to obtain digital images.

2. Preprocessing of the digital images, which includes extension of depth-of-field,

consistency checks and image filtering.
3. Image segmentation and postprocessing with morphological filtering techniques.

4. Classification of the segmented objects, in particular PM.

The algorithm described in detail below has been implemented in the programming language
C. The digital image processing is done on a Intel®Pentium®4 with 1.5 GHz CPU, 1024
MByte RAM and Unix operating system. The microscopy imaging is performed with a
Olympus VANTOX/T microscope with an on-board Sony CCD-camera. Initially stacks of



microscope greyscale images at a resolution of 760 x 570 pixels are acquired at different fo-
cal planes. The images have to be aligned throughout the stack and must be at the same

microscope magnification.

Throughout the paper the following notation is used: The images are considered as two-
dimensional intensity arrays {(z,y);1 < = < m,1 < y < n} with greyscale pixel data;
s(x,y; z) represents the kth slice of the image stack {s(z,y; z¢)}, in z-direction; for a pixel
at position (x,y) the index into the image array is given as a non-negative value in the range

of 0 to mn — 1.

3.1 Preprocessing Steps
3.1.1 Image Fusion Algorithm

In microscopy imaging with an conventional light microscope one has normally to deal with the
problem of limited depth-of-field. Only a small area of each microscopic section of a sample will
be in focus, most of the areas appear defocused. One common approach to extend the depth-
of-field is by taking multiple images by moving the focal plane serially through the sample
and selecting from each slice the areas where sharp features are present. In that way it is
possible to achieve an image projection of the sample that is in focus everywhere, which is more
suitable for image processing tasks such as segmentation and object recognition. Methods for
extending the depth-of-field in an image have been proposed by a number authors, an overview
can be found in [7]. There are three different approaches for image fusion algorithms, on point
process basis, on an neighborhood process basis and on the multi resolution process basis
respectively. The basic approach of all algorithms is, that initially an image stack {s(z, y; z) }x
is generated, where k is the number of images taken. Then for all image slices s(x, y; ;) every
pixel is scanned and for every pixel position (z,y) an in-focus measure is computed for each
respective slice. The pixel with the best measure is selected, according to sharpness criteria
regarding the different fusion algorithms and is built up to a composite image s(x,y). Since
a useful feature in an image usually is larger than one pixel, the point-based image fusion
may not be an appropriate method, therefore we used the area-based variance method. The
variance method is based on the assumption that larger variations of intensity occur in the
regions of the image that are in focus. The variance o(z, y; 2x) for each pixel position (x,y) of
s(x,y; z,) over a 3 x 3 pixels neighborhood is computed. In our implementation we used the
maximum absolute-value selection rule, since the largest absolute value indicates the presence
of a salient feature in the local area. At each position (z,y) the pixel along the z-axis with
the highest variance is chosen for the composite image.

As a multiresolution-based fusion algorithm we tested the complex wavelet method by using
the freely available software provided by [2], which applies the complex wavelet transform for

multi resolution image fusion in the wavelet domain. This method seems to be more sensitive



to translucent objects compared to the variance method.

3.1.2 Consistency Checks

A topological map M(z,y), 1 <z <m and 1 <y < n, is created by recording the numbers

of the selected slices based on the maximum absolute-value selection rule o:
M({B, y) ‘= arg man|0'(S(I,E, Y; Zk))|

This map is subject to consistency checks. There are several approaches on consistency checks.
We applied the majority filter as a spatial consistency check to the topological map M, i.e.
if the center map value in a 3 x 3 map patch comes from slice [ while the majority of the
surrounding entries are from a different slice k& # [, then the value of the M(z,y) = [ is
changed to M (z,y) = k. Finally a composite image is obtained based on the topological map
M:

s(z,y) = s(z,y: M(z,y)) VY (.y).

3.1.3 Image Filtering

We smooth the recorded images by the anisotropic diffusion ([4],[8]), which has the advantage
of reducing noise while preserving contours in the images.

Anisotropic diffusion filtering consists in solving the time dependent differential equation
Owu(t,x,y) — V- (D(Vu)Vu(t,z,y)) = 0,
using the given data s(x,y) defined on domain Q C R? as initial condition at the time ¢ = 0,
u(0,z,y) = s(z,y) on Q,

and homogeneous Neumann boundary conditions

g—Z(t,x,y) =0 on (0,7) x 00
up to a certain time 7. The diffusion tensor D(Vu,) is locally adapted to a presmoothed
version u, of the image, to provide linear diffusion in homogeneous regions and diffusion
parallel to edges in regions with high intensity gradients. The filtered image given by u(T, x, y)

then is used as input in the subsequent segmentation step described in section 3.2.1.

3.2 Image Segmentation and Object Classification
3.2.1 Object Finding

Image segmentation is an essential component in any image analysis and pattern recognition

and is one of the most difficult tasks, since it determines the quantitative interpretation of



the image data. Image segmentation can be defined as the process of partitioning an image
into disjoint but connected sets of pixels, referred to as objects and background. A detailed
overview over segmentation methods can be found in [5]. In this work we concentrate on
region growing techniques, which take the basic approach of classifying pixels on its position
and the surrounding region. We obtain homogeneous regions from the image through a growth
process, which starting from a preselected seed, progressively agglomerates points around it
satisfying a specified homogeneity criterion. The growth process stops when no more points
can be added to the region. The main advantage of this technique is that the regions ob-
tained are certainly spatially connected and rather compact. As a threshold parameter to
terminate the region growing algorithm, we choose an intensity threshold, which separates
the objects from the background. To determine the threshold intensity we employed the tri-
angle thresholding algorithm due to [10]. The reason for choosing this technique is that the
image grey-level histogram is bimodal or nearly bimodal, whereby the object pixels produce
a weak peak compared to the distinct main peak of the background. Additionally image seg-
mentation can be enhanced by postprocessing with morphological filtering ([6]) to facilitate
the feature detection. The most useful morphological operations are opening and closing,
including tasks such as smoothing out object outlines, filling small holes, connecting disjoint

objects, eliminating small bridges and branches.

3.2.2  Object Classification

The image objects having extracted still need to be classified. Since airborne dust particles
usually have no regular geometric shape, for a first classification of PM;, particular shape
features including object area, center of mass, perimeter and maximal diameter are computed.

As a grey level feature we take into account the mean intensity of the objects.

Let P be an segmented object, consisting of the set of pixels {(x;,y;);i € I}, where I denotes

set of pixel indexes. The mass of an object P is defined as
mass 1= ZU(SE“ Yi)
iel
whereby u(x,y) is considered as the smoothed, fused image described in section 3.1. The area

is measured in pixels and indicates the relative size of the object P. The mean intensity is

defined as the ratio of the object mass and object area. The object center is given as

T, 1 T;

The maximal radius of P, referred to as thickness, corresponds to the maximal euclidean

distance of all object pixels to the object center, i.e.

maxiel\/(xi - xc)Q + (yi - yc)2 .



All objects with a mean intensity in between a certain range, with a minimum size of pixels
and a maximal thickness are detected according to a user defined threshold feature vector.

The last step of our algorithm consists in counting the objects less than 10um in diameter.
4 Results

For testing the performance of the proposed detection algorithm, microscope slides were
scanned in z-direction, providing stacks of three greyscale images at a spatial resolution of 0.28
pm per pixel over a 220pm by 160um field of view. The preliminary results of the detection of
PM;o are shown in figure 1 and 2. The upper left images show respectively the preprocessed
fused images, containing small as well as comparable bigger airborne dust particles and single
pollen grains. The upper right images show the smoothing results of the anisotropic diffusion
filtering. The lower left images represent the results of segmentation, whereby only the objects
which where segmented are shown. From the 114 candidates found for the first sample image,
25 are detected as airborne particles with maximal diameter less than 10pm, marked in the
lower right image. For the second sample 40 from 92 segmented particles are detected as
PMjq. The detection of the particles is controlled by three parameters, namely the minimal
size, the minimal intensity difference from the background and the maximal radius related to
the thickness.

The quality of the PM;q monitoring carried out by human eye varies according to the experi-
ence of the person counting the particles. Instead the automated PM;q recognition provides
a reproducible well defined quality and with it a faster availability of the data. Furthermore
the algorithm detects a significant amount of particles which are not obviously visible to the

naked eye.
5 Discussion and Conclusion

In this paper we have presented an algorithm developed for digital recording, detection and
statistical processing of collected PM-data. In its current state the algorithm comprises data
acquisition including the treatment of different foci, pre-filtering based on anisotropic diffusion,
segmentation and intensity based classification.

Current results are promising but also indicate possible improvements of the algorithms.
Further developments of the algorithm will concentrate on separation of close-by objects,
enhancement of classification process based on multiple object features to provide robustness

and statistical treatment of detected PM including temporal trends.
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Figure 1: Top left: preprocessed image. Top right: image smoothed with anisotropic diffusion
filtering. Bottom left: 114 segmented objects. Bottom right: 25 detected particles less than
10pm in diameter. Parameter settings for PM;, selection: minimal size 2, minimal intensity
difference from background 0.15, thickness threshold 17.
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