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Abstract Camera motion estimation from observed

scene features is an important task in image processing

to increase the accuracy of many methods, e.g. opti-

cal flow and structure-from-motion. Due to the curved

geometry of the state space SE3 and the non-linear rela-

tion to the observed optical flow, many recent filtering

approaches use a first-order approximation and assume

a Gaussian a posteriori distribution or restrict the state

to Euclidean geometry. The physical model is usually

also limited to uniform motions.

We propose a second-order minimum energy filter

with a generalized kinematic model that copes with the

full geometry of SE3 as well as with the nonlinear de-

pendencies between the state space and observations.

The derived filter enables reconstructing motions cor-

rectly for synthetic and real scenes, e.g. from the KITTI

benchmark. Our experiments confirm that the derived

minimum energy filter with higher-order state differen-

tial equation copes with higher-order kinematics and

is also able to minimize model noise. We also show

that the proposed filter is superior to state-of-the-art

extended Kalman filters on Lie groups in the case of
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linear observations and that our method reaches the

accuracy of modern visual odometry methods.
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1 Introduction

1.1 Overview and Motivation

Camera motion estimation is a fundamental task in

many important applications (e.g. autonomous driving,

robotics) in computer vision. It is an essential compo-

nent of structure-from-motion, simultaneous localiza-

tion and mapping (SLAM) and odometry tasks. Fur-

thermore it aids as additional prior for e.g. optical flow

methods. In the proposed approach, the ego-motion of

the camera is fully determined solely by the apparent

motion of visual features (optical flow) as recorded by

the camera without needing additional sensors such as

GPS or acceleration sensors.

Although the camera motions can be reconstructed

correctly from only two consecutive frames [36,21], the

best performing methods take into account multiple

frames. They are more robust against the influence of

erroneous correspondence estimates. Two approaches

to making use of the temporal context can be distin-

guished: batch approaches – such as bundle adjust-

ment methods [45] – first record all the frames and

fit in a smooth camera path afterwards. They some-

times also incorporate loop closure constraints [48] to

further improve camera motion accuracy. Factorization

methods [43,35] create the problem of jointly estimat-

ing camera poses and scene points as a matrix decom-

position problem. These batch approaches have the po-
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tential of working exactly as they make use of all avail-

able information. On the other hand, they hardly work

in real-time applications, as the volume of incorporated

information increases linearly with time.

In contrast, online approaches apply sliding win-

dow techniques [6,8,11] that track features on multi-

ple frames to increase robustness and compute the best

fitting motion.

A mathematical description of (online) temporal

smoothing is given by the notion of (stochastic) filter-

ing [7]: in case of on the one hand, an ODE describ-

ing the behavior of a latent variable, and on the other

hand, observations that depend on the latent variable,

the goal is to estimate the most likely value of the

unknowns. However, stochastic filters suffer from non-

linear dependencies of latent variables and observations

as well as geometric constraints and unknown probabil-

ity distributions.

That is the reason why we chose deterministic Min-

imum Energy Filters that do not need information

about distributions and cope with the non-linearities

of the observer equation and the geometry of the state

space SE3 in [9]. Since the state equation of the ego-

motion in [9] is simple and requires small weights on

the penalty term for the model noise, however, this ap-

proach is sensitive against noise and requires good ob-

servation data.

Therefore, in this paper, we extend our previous

work [9] to a second-order model with constant acceler-

ation assumption which is more stable and shows bet-

ter convergence. In our experiments, we demonstrate

significantly improved performance both on synthetic

data with higher-order kinematic scenarios and on the

challenging KITTI benchmark [18]. Comparison with

novel continuous/discrete extended Kalman filters on

Lie Groups [12] shows that our approach – although

being less general than [12] – leads to better results

and is robust against imperfect initializations.

1.2 Related Work

Incorporation of temporal context – in terms of (par-

tial) differential equations – into the estimation of la-

tent variables has a long tradition in many common

applications, e.g. robotics, aviation and astronautics.

Starting from the seminal work of Kalman [27] con-

sidering Gaussian noise and linear filtering equations,

stochastic filters had have great success in many impor-

tant areas of mathematics, computer sciences and engi-

neering during the last fifty years. The filtering meth-

ods have been improved during the last decades to cope

with nonlinearities of state and observation equations,

such as extended Kalman filters [24], unscented Kalman

filters [25] and particle filters [4]. For a detailed overview

of these methods we refer to [7,16].

However, one strong limitation of stochastic filters

represents the fact that the a posteriori distribution

is usually unknown and, in general, is infinite dimen-

sional due to the nonlinear dependencies. To cover a

large bandwidth of a posteriori distributions Brigo et

al. approximated them by distributions of the exponen-

tial family [13]. In contrast, particle filters try to sample

from them [4]. Extended and unscented Kalman filters,

on the other hand, only allow distributions that are

Gaussian.

Although these methods work successfully for many

real-valued problems, they cannot be easily transferred

to filtering problems which are constrained to man-

ifolds, appearing in many modern engineering and

robotic applications. Therefore, in the last decade, sev-

eral strategies have been developed to adapt classi-

cal unconstrained filters to filtering problems on spe-

cific Lie groups and Riemannian manifolds: Kalman

filters were transferred to the manifold of symmetric

positive definite matrices [46]. Extended Kalman filters

on SO3 [32] with symmetry preserving observers [10]

were elaborated. Particle filters on SO3 and SE3 were

proposed in [29] as well on Stiefel [44] and on Grass-

man manifolds [38]. An application of particle filters to

monocular SLAM is reported in [30].

Recently, unscented Kalman filters were generalized

to Riemannian manifolds [22]. Since then, extended

Kalman filters for constrained model and observation

equations were developed [12] for general Lie groups

based on the idea of the Bayesian fusion [49].

However, although stochastic filters have been

adapted to curved spaces and non-linear measurement

equations, they still require assumptions about the a

posteriori distributions, e.g. to be Gaussian. Further-

more, while transferring related concepts of probabil-

ity theory and stochastic analysis to Riemannian man-

ifolds is mathematically feasible [23,15,14], exploiting

them computationally for stochastic filtering seems in-

volved. The widely applied particle filters also have lim-

itations in connection with manifolds since the sampling

requirements of particles become expensive [30].

A different way to approach a solution to the filter-

ing problem was proposed by Mortensen [33]. Rather

than trying to cope with the probabilistic setting of the

filtering problem, he investigated the filtering problem

from the viewpoint of optimal control. By using the

control parameter to model noise and by integrating

a quadratic penalty function over the time, he found

a first-order optimal Minimum Energy Filter. The ad-

vantage of this method is that it does not rely on as-
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sumptions about, or approximations of, the a posteriori

distribution and that Hamilton-Jacobi-Bellman equa-

tion provides a well-defined optimality criterion. It was

shown theoretically in [28] that the minimum energy

estimator converges with exponential speed for control

systems on Rn that are uniformly observable.

The first article applying the minimum energy fil-

ters to geometrically constrained problems used per-

spective projections in the case of vectorial measure-

ments [3] . The minimum energy filters were generalized

to second-order filters on specific Lie groups with the

help of geometric control theory in [26,2,39]. The Min-

imum Energy Filter, as introduced by Mortensen [33],

was generalized to the Lie group SO3 for the case of

linear observation equations [51] and for attitude esti-

mation [50]. Further follow-up work [40] generalized the

filter to non-compact Lie groups [41].

In this article, we greatly elaborate our initial work

on camera estimation using nonlinear measurement

equations, especially by moving from a constant veloc-

ity assumption [9] to a second-order state equation with

constant acceleration model. In addition, we investigate

generalized kinematic models of arbitrary order.

1.3 Contribution and Organization

Our contributions reported in this paper amount

– to generalize the constant camera velocity model

from [9] (non-linear measurement model) to polyno-

mial models, in particular the constant acceleration

model;

– to provide a complete derivation of the second-order

minimum energy filter [41] as applied to camera mo-

tion estimation together with robust numerics that

are consistent with the geometry and the structure

of matrix Riccati equations;

– to report experiments demonstrating that higher-

order kinematic models are more accurate than the

constant velocity model [9] on synthetic (with kine-

matic camera tracks) and real world data and that

they enable to reconstruct higher-order information;

– to report experiments comparing our approach to

state-of-the-art extended Kalman Filters on Lie

groups [12], indicating that our method is supe-

rior in coping with non-linearities of the observation

function as well as in being more robust against im-

perfect initializations.

In the next section, we introduce the filtering equa-

tions related to our problem of camera motion recon-

struction. Next, we describe the basics of minimum

energy filters and detail how to apply the (operator-

valued) minimum energy filter derived from [41] to

our scenario. The numerical integration schemes of the

ODEs for the optimal state will be given in Section 5.

We will confirm the theoretical results in Section 6 by

experiments on synthetic and real world data and thus

underline the applicability of our approach.

1.4 Notation

GL4 General Linear group
SO3 Special Orthogonal group
SE3 Special Euclidean group
se3 Lie algebra of SE3

vecse : se3 → R6 vectorization operator
matse = vec−1

se inverse of vecse
G (product) Lie group SE3×R6

g Lie algebra of G
TGG tangent space of G at G
vecg : g→ R12 vectorization operator
matg =: vec−1

g inverse of vecg
ExpG exponential map on G
LogG logarithmic map on G
Pr : R4×4 → se3 projection onto Lie algebra se3
LGH := GH left translation
THLG tangent map of left translation at H
Gη := TIdLGη shorthand for tangent map
G−1η := TIdL

∗
Gη shorthand for dual of tangent map

Id identity element of Lie group
〈ξ, η〉G Riemannian metric at G ∈ G
〈ξ, η〉 = 〈ξ, η〉Id Riemannian metric on Lie algebra g
〈x, y〉 scalar product on Rn
∇·· Levi-Civita connection on TG
ωχη := ω(χ, η) := ∇χη connection function for χ, η ∈ g
ω�
χ η := ωηχ swap operator
〈ω∗χη, ξ〉 := 〈η, ωχξ〉 dual of connection function
〈ω�∗
χ η, ξ〉 := 〈η, ωξχ〉 dual of swap operator

[·, ·] Lie bracket on considered
Lie group, matrix commutator

df(G) differential/Riemannian gradient
of f at G

df(G)[η] directional derivative of f
in direction η

Hess f(G) Hessian of a twice differentiable
function f : G → R

dif differential resp.
i-th component of f

dG differential of an expression resp. G
[n] := {1, . . . , n} set of integer numbers from 1 to n
η, χ, ξ tangent vectors
xi:j i-th to j-th component of x
Ai:j,k:l block matrix with rows from i to j

and columns from k to l from A
1n n× n identity matrix
‖x‖2Q := 〈x,Qx〉 quadratic form regarding Q

eni i-th unit vector in Rn

Moreover, we will employ the following concepts

from differential geometry:

Riemannian metric on product Lie group. On SE3 as

submanifold of GL4, the Riemannian metric at E ∈ SE3

for ξ, η ∈ TE SE3 is given by 〈ξ, η〉E := 〈E−1ξ, E−1η〉14

where 〈A,B〉14 := tr(A>B) is the usual inner matrix

product.
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Id ∈ G

G = Expg(η)

χ = TIdLGη =: Gη

H

ξ = TIdLHη = TIdLHT
∗
IdLGχ

TGG

g = TIdG = se3 × R6
vecg

matg R12

ExpgLogg

G = SE3×R6

η0 ∈ g

Fig. 1: Illustration of the Lie group G (represented as sphere) with its Lie algebra g and tangent spaces at different

points. A tangent vector χ at a point G can be expressed as tangent map at identity of the left translation at G

of a vector η ∈ g, i.e. χ = Gη. Since the Lie algebra g can be identified by the vecg mapping with R12, we can

express each tangent vector at a point G as a pair (G, vecg(η)). Each tangent vector on any tangent space may be

mapped to the manifold using the exponential map Exp.

Riemannian Gradient. For a real-valued function f :

G → R, the Riemannian gradient df(G) is defined

through the relation 〈df(G), η〉G := df(G)[η] for all

η ∈ TGG. For the product Lie group G = SE3×R6 and

G = (E, v) ∈ G, η = (Eη1, η2) ∈ TGG we calculate the

Riemannian gradient as follows:

df(G)[η] = 〈df(G), η〉G
=〈E−1dEf((E, v)), η1〉14

+ 〈dvf((E, v)), η2〉 ,

where dEf((E, v)) is the partial Riemannian gradient

on SE3 and dvf((E, v)) is the Euclidean partial gradi-

ent on R6.

Levi-Civita connection and connection function. For

G ∈ G we denote by ∇ the Levi-Civita connection of

the Lie group G given through ∇ : TGG × TGG → TGG,

with the properties symmetry, i.e. [η, χ] = ∇ηχ−∇χη,

where [·, ·] denotes the Lie bracket, and compatibility

with the Riemannian metric. The Levi-Civita connec-

tion is characterized by its connection function ω :

g × g → g, ω(ξ, η) := ωξη := ∇ξη with the property

∇GξGη = Gωξη for ξ, η ∈ g.

Riemannian Hessian. The Riemannian Hessian is de-

fined through 〈Hess f(G)[ξ], η〉 := d(df(G)[ξ])[η] −
df(G)[∇ηξ]. On the product Lie group G = SE3×R6

which we consider in this paper, we set G = (E, v) ∈ G
and ξ = (Eξ1, ξ2) ∈ TGG, η = (Eη1, η2) ∈ TGG.

2 Minimum Energy Filtering Approach

2.1 State Model with Constant Acceleration

Assumption

In the following we will denote by E(t) ∈ SE3 the time-

dependent (external) camera parameter that can be ex-

pressed in terms of a rotation matrix R(t) ∈ SO3 and

a translation vector w(t) ∈ R3 as a 4× 4 matrix

E(t) =

(
R(t) w(t)

01×3 1

)
, (1)

for which we also use the shorthand E(t) = (R(t), w(t)).

Since the ego-motion of a camera is generally not con-

stant, the model Ė = 0 assumed in previous work [9]

does not hold in real-world problems, where a camera

fixed to a car rotates and accelerates in different direc-

tions. The constant acceleration assumption, however,

is more suited in this cases. It can be described by the

second-order differential equation Ë(t) = 0 for all t with

initial pose E(t0) = E0 and velocity Ė(t0) = V0. In

general, one can consider a polynomial model of even

higher-order for E(t). In the following, we will focus

on the assumption that E(t) is quadratic in t. We will

comment on generalizations at the end of Section 3.

The equation Ë(t) = 0 can be prescribed as a sys-

tem of first-order differential equations

Ė(t) =V (t) ,

V̇ (t) =0 ,
(2)

where V (t) ∈ TE(t) SE3 and V̇ (t) ∈ TV (t)TE(t) SE3 =

TE(t) SE3. However, since the tangent bundle of a
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Lie Group can be expressed in terms of the product

T SE3 ∼ SE3×se3, we obtain a more compact expres-

sion, i.e.

Ė(t) =E(t) matse(v(t)),

v̇(t) =06 ∈ R6,
(3)

where the operator matse : R6 → se3 is defined by

(η1, η2, η3, η4, η5, η6)> 7→


0 − η3√

2

η2√
2

η4

η3√
2

0 − η1√
2
η5

− η2√
2

η1√
2

0 η6

0 0 0 0

 . (4)

The inverse operation is denoted by vecse : se3 → R6.

Note that this operation is consistent with the usual

scalar product, i.e. for χ, η ∈ se3 it holds

〈χ, η〉Id := tr(χ>η) = 〈vecse(χ), vecse(η)〉. (5)

Since SE3 is a Lie Groups regarding the matrix multi-

plication and R6 is a Lie Group regarding addition, we

can understand the system (3) as a first-order differen-

tial equation on a product Lie Group

G := SE3×R6. (6)

For two elements G1 = (E1, v1), G2 = (E2, v2) ∈ G we

define the left translation LG1
by LG1

G2 := (E1E2, v1+

v2) ∈ G. Since the tangent bundle TR6 can be identified

with R6, we obtain the Lie algebra

g = se3 × R6. (7)

In turn, we can take down (3) compactly as

Ġ(t) = (E(t) matse(v(t)),06) , (8)

where E and v will denote the first and second ele-

ment of G ∈ G, respectively. On matrix Lie groups, one

can express kinematics directly as matrix multiplica-

tion (cf. [51]), i.e. Ė = EΓ for Γ ∈ se3, E ∈ SE3, which

is not valid for general Lie groups. The rigorous way to

describe kinematics is to use the tangent map (cf. [41])

of the left translation which is given by the following

proposition:

Proposition 1 The tangent map of the left translation

regarding G = (E, v) ∈ G at identity, i.e. TIdLG : g →
TGG, can be computed for η = (η1, η2) ∈ g as

TIdLGη = (Eη1, η2) = L(E,0)η =: Gη. (9)

With Proposition 1 we can write down (8) as

Ġ(t) = TIdLG(t)f(G(t)) = G(t)f(G(t)), (10)

where f : G → g is given by

f(G) = f((E, v)) = (matse(v),06). (11)

Remark 1 During the further development, the nota-

tion Gη for a Lie group element G ∈ G and η ∈ g

must always be understood as the tangent map of

the left translation at identity. Similarly, we denote

G−1η := TIdL
∗
Gη for the dual of the tangent map of

LG at identity.

2.2 Optical Flow Induced by Ego-Motion

The optical flow u : Ω × T → R2 on an image se-

quence {I(t), t ∈ T} can be computed in terms of the

underlying scene structure as given by a depth map

d : Ω × T and the camera motion E : T → SE3, i.e.

E(t) = (R(t), w(t)), where R(t) and w(t) denote the

camera rotation and translation, respectively, by the

following relation:

u(x, t; d(x, t),(R(t), w(t)))

=π(R(t)>(( x1 ) d(x, t)− w(t)))− x,
(12)

whereas π : R3 → R2 is the projection (x1, x2, x3)> 7→
x−13 (x1, x2)> as depicted in Fig. 2. Note that x ∈ R3 in-

dicates inhomogenous coordinates rather than homoge-

nous coordinates on the projective space.

We can also express (12) directly in terms of E(t).

By adding the superscript k for (discretized) pixels xk ∈
Ω, we obtain

u(xk, t; d(x, t), E(t)) + xk = π((E−1(t)gk(t))1:3), (13)

where gk(t) := (d(xk, t)(xk)>, d(xk, t), 1)> denotes the

data vector containing depth information of pixel xk

below.

Remark 2 In the equation (13) we assumed a static

scene, since we set the scene point X constant in time.

3 Minimum Energy Filter Derivation

In this section, we will determine the problem of camera

motion estimation with filtering equations, and we will

summarize the most important steps for the derivation

of the minimum energy filter.

By denoting the left hand side of (13) by yk ∈ R2

which is the observation, i.e.

yk(t) := u(xk, t; d(x, t), E(t)) + xk , (14)

and defining

hk(E, t) := π((E−1(t)gk(t))1:3) (15)

as the right hand side of (13), together with (3)

and (10), we obtain the following state- and observa-

tion system by setting G = (E, v) ∈ G:
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X = d(x(t))x(t)

E(t− 1) = (I3,0)

w(t)

E(t) = (R(t), w(t))

x(t)

x̃(t+ 1)

x(t)

x(t+ 1)

u(x(t), t)

Fig. 2: Camera model for the monocular approach: A

static scene point X is projected onto the plane at x(t)

of the first camera E(t − 1) which is mounted at the

origin with rotation 13 such that X = d(x(t))x(t). By

moving the camera into position E(t) = (R(t), w(t)),

the scene point is projected onto π(R>(t)(X−w(t))) =

x(t+1) which is at the same (relative) image position as

x̃(t+1) on the second image plane. The induced optical

flow is given by the difference u(x(t), t) = x(t+1)−x(t).

Ġ(t) =G(t)(f(G(t)) + δ(t)), G(t0) = G0 , (state) (16)

yk =hk(E(t), t) + εk(t), k ∈ [n] , (observation) (17)

where f(G) is defined as in (11) and n denotes a

(fixed) number of specific image pixels. The functions

δ : T → g and εk : T → R2, k ∈ [n] are noise processes

that model deviations from state and observations, re-

spectively. Here, T denotes a continuous time interval,

e.g. T = R≥0.

3.1 Energy Function

Given a depth map, which is contained in the function

gk(t) in (15) and the optical flow uk in terms of the

observations yk in (14), we want to find the camera

motion and its velocity in terms of G(t) ∈ G such that

the observation error εk in (17) is minimal and such

that (16) is fulfilled with minimal deviations δ(t) for all

t ∈ T.
To this end, we consider the penalization of δ =

(δ1, δ2) ∈ g and ε = {εk}nk=1 by a quadratic function

c : g× R2n × T × T → R given as

c(δ, ε, τ, t) := 1
2

(
‖vecse(δ1(τ))‖2S1

+ ‖δ2(τ)‖2S2
+

n∑
k=1

‖εk(τ)‖2Q
)
,

(18)

where S1, S2 ∈ R6×6 and Q ∈ R2×2 are symmetric,

positive definite weighting matrices. From [41] we adopt

the idea of a decay rate α > 0, and thus we introduce

the weighting factor e−α(t−t0) on the right-hand side

of (18):

c(δ, ε, τ, t) := 1
2e
−α(t−t0)

(
‖vecse(δ1(τ))‖2S1

+ ‖δ2(τ)‖2S2
+

n∑
k=1

‖εk(τ)‖2Q
)
.

(19)

Based on the penalty function (19), we define the en-

ergy:

J (δ, ε, t0, t) := m0(G(t), t, t0) +

∫ t

t0

c(δ, ε, τ, t) dτ , (20)

where m0 is a quadratic penalty function for the initial

state. For our model we set

m0(G, t, t0) := 1
2e
−α(t−t0)〈G− Id, G− Id〉Id, (21)

where the difference is canonical, i.e.G−Id = (E−14, v)

for G = (E, v).

Remark 3 Instead of using two quadratic forms with

matrices S1, S2, we can use more generally a symmetric

and positive weighting matrix S ∈ R12×12 if we want

to couple δ1 and δ2. In the upper case we find that

S =
(
S1 0
0 S2

)
.

3.2 Optimal Control Problem

The optimal control theory allows us to determine the

optimal control input δ : T → g that minimizes the

energy J (δ, ε(G(t), t), t0, t) for each t ∈ T subject to

the state constraints (16). To be precise, we want to

find for all t ∈ T and fixed G(t) the control input δ|[t0,t]
defining

V(G(t), t) := min
δ|[t0,t]

J (δ, ε(G(t), t), t0, t), s.t. (16) . (22)

The optimal trajectory is

G∗(t) := arg minG(t)∈G V(G(t), t) , (23)

for all t ∈ T and V(G, t0) = m0(G0, t0, t0). This prob-

lem is a classical optimal control problem, for which the
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standard Hamilton-Jacobi theory [26,5] under appro-

priate conditions results in the well-known Hamilton-

Jacobi-Bellman equation. Pontryagin [5] proved that

the minimization of the Hamiltonian provides a solution

to the corresponding optimal control problem (Pontrya-

gin’s Minimum Principle).

However, since G is a non-compact Riemannian

manifold, we cannot apply the classical Hamilton-

Jacobi theory for real-valued problems (cf. [5]). Instead

we follow the approach of Saccon et al. [41] who derived

a left-trivialized optimal Hamiltonian based on control

theory on Lie groups [26]. This left-trivialized optimal

Hamiltonian is defined by H̃− : G × g× g× T → R,

H̃−(G,µ, δ, t) := c(δ, ε(G, t), t0, t)− 〈µ, F (G(t)) + δ〉Id.
(24)

The minimization of (24) w.r.t. the variable δ = (δ1, δ2)

leads [41, Proposition 4.2] to the optimal Hamiltonian

H−(G,µ, t) := H̃−(G,µ, δ∗, t) , (25)

where δ∗ = (δ∗1 , δ
∗
2) is given by

vecse(δ
∗
1) = eα(t−τ)S−11 vecse(µ1), and

δ∗2 = eα(t−t0)S−12 µ2 .
(26)

Examining the right-hand side of (25) in detail, we ob-

tain

H−((E, V ), µ, t) = 1
2e
−α(t−t0)

( n∑
k=1

‖yk − hk(E)‖2Q
)

− 1
2e
α(t−t0)

(
〈µ1,matse(S

−1
1 vecse(µ1))〉Id (27)

+ 〈µ2, S
−1
2 µ2〉

)
− 〈µ1,matse(V )〉Id ,

where we used ε(G(t), t) = {yk − hk(E(t), t)}nk=1. Here

we introduced on the left hand side the variable G since

the right hand side depends on G = (E, v).

In the next section, we will compute explicit ordi-

nary differential equations regarding the optimal state

E∗(t) for each t ∈ T that consists of different deriva-

tives of the left trivialized Hamilton function (27).

3.3 Recursive Filtering Principle by Mortensen

In order to find a recursive filter, we compute the total

time derivative of the optimality condition on the value

function, which is

d1V(G∗, t) = 0 , (28)

for each t ∈ T . This equation must be fulfilled by an

optimal solution G∗ ∈ G of the filtering problem. Un-

fortunately, because the filtering problem is in general

infinite dimensional, this leads to an expression contain-

ing derivatives of every order. In practice (cf. [51,41]),

derivatives of third order and higher are neglected, since

they require tensor calculus. Omitting these leads to a

second-order approximation of the optimal filter. The

following theorem is an adaption of [41, Theorem 4.1]:

Theorem 1 The differential equations of the second-

order Minimum Energy Filter for state (16) and non-

linear observer model (17) are given by

(G∗)−1Ġ∗ =
(
f(G∗)−matg(P (t) vecg(rt(G

∗)))
)
,

G∗(t0) = Id , (29)

Ṗ (t) = −α · P + S−1 + CP + PC>

− P
(∑n

k=1(Γ̃vecse(Pr(Ak(E∗))) +Dk(E∗)) 06×6
06×6 06×6

)
P ,

P (t0) = 112 ,

(30)

where rt(G
∗) :=

(∑n
k=1 Pr(Ak(E∗),06

)
and

C(G∗, t) :=

(
−Ψ(G∗, t) 16

06×6 06×6

)
,

with

Ψ(G∗, t) := advec
se3(f(G∗)) + Γ̃ ∗vecse(P rt(G∗)) . (31)

The function Ak : SE3 → R4×4 is given by

Ak(E) = Ak(E, gk) :=
(
κ−1k Î − κ−2k ÎE−1e43g

>
k Î
)>

·Q(yk − hk(E))g>k E
−>,

(32)

where κk := κk(E) := (e43)>E−1gk. The second-order

operator Dk : SE3 → R6×6 is given by (101), see Ap-

pendix C.

The matrix valued functions Γ̃z, Γ̃
∗
z : R6 → R6×6

are obtained from the vectorization of the connection

functions. Their components are given by (Γ̃z)ij :=∑6
k=1 Γ

i
jkz

k and (Γ̃ ∗z )ik :=
∑6
j=1 Γ

i
jkz

j with z ∈ R6 and

the Christoffel-Symbols Γ ijk are given in Appendix D.

This theorem will be proven at the end of the section.

Remark 4 A generalization of this theorem is published

in Saccon et al. [41] for a larger class of filtering prob-

lems. However, the application of the theorem is not

straightforward since the appearing expressions, e.g. ex-

ponential functor, cannot be evaluated directly. Fur-

thermore, the adaption to nonlinear filtering problems

has not been considered in the literature yet. Besides,

we show how to find explicit expressions in terms of

matrices for the general operators in [41].
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In our previous work [9] we presented a theory re-

garding the case of constant velocity. This theory can

be derived directly from Theorem 1 by neglecting the

velocity v i.e. the second component of G = (E, v) ∈ G
(thus changing from Lie group SE3×R6 to SE3) and by

setting f(G) ≡ 0. In this case, the state and observation

equations are reduced to

Ė(t) =E(t)δ(t), E(t0) = E0, (state) , (33)

yk =hk(E(t), t) + εk(t), k ∈ [n]. (observation).

(34)

For the reader’s convenience, we state the theory under

the assumption of constant velocity as a corollary:

Corollary 1 The differential equations of the second-

order Minimum Energy Filter for our state (33) and

nonlinear observer model (34) are given by

(E∗)−1Ė∗ = −matse(P (t) vecse(

n∑
k=1

Pr(Ak(E∗)))),

E∗(t0) = Id , (35)

Ṗ (t) = −α · P + S−11

− Γ̃ ∗
vecse((E∗)−1Ė∗)

P − P (Γ̃ ∗
vecse((E∗)−1Ė∗)

)>

− P
( n∑
k=1

(Γ̃vecse(Pr(Ak(E∗))) +Dk(E∗))
)
P,

P (t0) = 16.

(36)

Remark 5 We compare the computational complexity

for the cases of constant velocity and constant accelera-

tion. By considering the difference between Theorem 1

and Corollary 1, we see that the only differences are a

larger state space and the occurrence of the additional

operator f(G∗) in (31). However, this does not change

the computational effort significantly. Thus, we suggest

to use the second-order minimum energy filter since it

is more robust but computational only slightly more

complex as we will see in the experiments.

Before we will turn to proving Theorem 1, we first

provide some lemmas that are based on the general ap-

proach of [41]. However, we cannot use the main result

of [41] directly, since the appearing general operators

are complicated to evaluate. Instead, we provide the

corresponding expressions in such a way that they can

be easily implemented. Thus, following [41, Eq. (37)]

the estimate of the optimal state G∗ is given by

(G∗)−1Ġ∗ = −d2H−(G∗, 0, t)

− Z(G∗, t)−1 ◦ (G∗)−1d1H−(G∗, 0, t) .
(37)

This expression contains the second-order information

matrix Z(G, t) : g → g of the value function V as de-

fined in (22), defined through

Z(G, t) ◦ η = G−1 ◦Hess1 V (G, t)[Gη] . (38)

An explicit expression for the gradient of the Hamilto-

nian in (37) is provided in the following lemma:

Lemma 1 The Riemannian gradient d1H−(G,µ, t) on

TGG for G = (E, v) can be calculated as

d1H−(G,µ, t)

=G
(
e−α(t−t0)

n∑
k=1

Pr(Ak(E)),− vecse(µ1)
)
,

(39)

where the function Ak(E) = Ak(E, gk) : SE3×R4 →
GL4 is defined in (32).

By insertion of (39) in (37) and usage of the definition

of rt(G
∗) from Theorem 1 we obtain

(G∗)−1Ġ∗ = −d2H−(G∗, 0, t)

− e−α(t−t0)Z(G∗, t)−1 ◦ rt(G∗).
(40)

Following the calculus in [41], the evolution equation

for the trivialized Hessian Z(G, t) : g→ g∗ is given by

d

dt
Z(G∗(t), t)

≈Z(G∗, t) ◦ ω(G∗)−1Ġ∗

+ Z(G∗, t) ◦ ω�
d2H−(G∗,0,t)

+ ω∗
(G∗)−1Ġ∗ ◦ Z(G∗, t)

+ ω�∗
d2H−(G∗,0,t) ◦ Z(G∗, t)

+ TIdL
∗
G∗ ◦Hess1H−(G∗, 0, t) ◦ TIdLG∗

+ TIdL
∗
G∗ ◦ d2(d1H−)(G∗, 0, t) ◦ Z(G∗, t)

+ Z(G∗, t) ◦ d1(d2H−)(G∗, 0, t) ◦ TIdLG∗

+ Z(G∗, t) ◦Hess2H−(G∗, 0, t) ◦ Z(G∗, t) .

(41)

(cf. [41, Eq. (51)]).

The “swap”-operators ω�
· ·, ω�∗

· · in this expres-

sion are defined in Section 1.4, i.e. ω�
η ξ := ωξη and

〈ω�∗
η ξ, χ〉Id := 〈ξ, ω�

η χ〉Id = 〈ξ, ωχη〉Id. By considering

the standard basis of g, there exists a matrix represen-

tation K ∈ R12×12, such that for all η = (η1, η2) ∈ g we

receive

vecg(Z(G∗, t) ◦ η) = K(t) vecg(η) . (42)

Similarly to [9] we need to evaluate the right-hand side

of the evolution equation at η ∈ g and to vectorize

it. The single expressions are shown in the following

lemma.

Lemma 2 (Matrix representations of Z)

Let Z(G∗, t) : g → g be the operator (38). Then there

exists a matrix K = K(t) ∈ R12×12 yielding

vecg(Z(G∗, t)(η)) = K(t) vecg(η), (43)
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and thus

vecg(d/dtZ(G∗, t)(η)) =K̇(t) vecg(η) , (44)

vecg(Z−1(G∗, t)(η)) =K−1(t) vecg(η) , (45)

as well as

1. vecg(Z(G∗, t) ◦ ω(G∗)−1Ġ∗η

+ Z(G∗, t) ◦ ω�
d2H−(G∗,0,t)η) = K(t)B vecg(η)

2. vecg(ω∗
(G∗)−1Ġ∗ ◦ Z(G∗, t) ◦ η

+ ω�∗
d2H−(G∗,0,t) ◦ Z(G∗, t) ◦ η) = B>K(t) vecg(η)

3. vecg(TIdL
∗
G∗ ◦ Hess1H−(G∗, 0, t)[TIdLG∗η]) =

e−α(t−t0)

·
(∑n

k=1(Γ̃vecse(Pr(Ak(E))) +Dk(E)) 06×6
06×6 06×6

)
vecg(η)

4. vecg(Z(G∗, t) ◦ d1(d2H−)(G∗, 0, t) ◦ TIdLG∗η)

= −K(t)

(
06×6 16

06×6 06×6

)
vecg(η)

5. vecg(TIdL
∗
G∗ ◦ d2(d1H−)(G∗, 0, t) ◦ Z(G∗, t) ◦ η)

= −
(

06×6 06×6
16 06×6

)
K(t) vecg(η)

6. vecg(Z(G∗, t)(Hess2H−(G∗, 0, t)[Z(G∗, t)(η)]))

= −eα(t−t0)K(t)S−1K(t) vecg(η) ,

with Γ̃·, Γ̃
∗
· , and functions Ak, Dk from Theorem 1 and

B :=
(
Ψ(G∗,t) 06×6

06×6 06×6

)
, (46)

with Ψ from Theorem 1.

With these lemmas we are able to prove our main

result in Theorem 1:

Proof (of Theorem 1) We can easily compute the dif-

ferential of Hamiltonian in (27) which is

−d2H−(G∗, 0, t) =
(
matse(v

∗),0
)

= f(G∗) . (47)

By inserting expression (47) into the optimal state

equation (40) together with the definition of the oper-

ator vecg(Z(G∗, t)−1 ◦ G∗η) = K−1(t) vecg(η), we find

that

(G∗)−1Ġ∗ = f(G∗)

− e−α(t−t0) matg
(
vecg(Z(G∗, t)−1 ◦ rt(G∗))

)
=f(G∗)− e−α(t−t0) matg

(
K−1(t) vecg(rt(G

∗))
)
. (48)

The application of the vecg−operation onto the equa-

tion (41) evaluated for a direction η, together with

Lemma 2 results in

K̇(t) vecg(η) =
[
K(t)B +B>K(t)

+ e−α(t−t0)
(∑n

k=1(Γ̃vecse(Pr(Ak(E)))+Dk(E)) 06×6

06×6 06×6

)
−K(t)

(
06×6 16

06×6 06×6

)
−
(

06×6 06×6

16 06×6

)
K(t)

− eα(t−t0)K(t)S−1K(t)
]

vecg(η),

(49)

where on the right-hand side we assume that K(t) is an

approximation of the vectorized operator Z(G∗(t), t).

This is the reason why we replace the approximation

by an equality sign in (49). With a change of variables

(cf. [41])

P (t) := e−α(t−t0)K(t)−1 , (50)

and the formula for the derivative of the inverse of a

matrix [37], we obtain

Ṗ (t) =− αe−α(t−t0)K(t)−1 − e−α(t−t0)K(t)−1K̇(t)K(t)−1

=− αP (t)− eα(t−t0)P (t)K̇(t)P (t) . (51)

Insertion of (49) (after omitting the direction vecg(η)

that was chosen arbitrarily) into (51) leads to the dif-

ferential equation (30) in Theorem 1. Therefore, we also

find that

C(G∗, t) =
(

06×6 16

06×6 06×6

)
−B(t) . (52)

The differential equation of the optimal state (29)

follows from inserting (50) into (48), which completes

the proof. ut

3.4 Generalization to Higher-order Models

In the previous section, we discussed minimum energy

filters to estimate ego-motion under the assumption of

constant acceleration. We saw that changing the as-

sumption of constant velocity to constant acceleration

requires extending the Lie group and adopting the func-

tions f(G) and C(G).

The generalization to higher polynomial models re-

garding camera motion, where we assume that the m-th

order derivative of the ego-motion should be zero, i.e.

dm

dtm
E(t) = 0, (53)

is straightforward.

Again, the approach can be described by a system of

first-order ODEs as follows. Note that in the constant

acceleration model (second-order), only the first-order

model needs to respect manifold structures, whereas

all the other derivatives are trivial since they evolve on

Euclidean spaces:

Ė(t) =E(t)
(
matse v1(t) + δ1(t)

)
,

v̇1(t) =v2(t) + δ2(t),

...

v̇m−2(t) =vm−1 + δm−1(t),

v̇m−1(t) =δm(t)

(54)
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To achieve a unique solution we require initial values,

i.e. v1(0) = v01 , . . . , vm−1(0) = v0m−1 ∈ R6. Again, the

observation equations (17) stay unchanged. The min-

imum energy filter for this model is provided by the

following theorem. By using once again

G = (E, v1, . . . , vm−1) ∈ Gm := SE3×R6 × · · · × R6 ,

(55)

the corresponding minimum energy filter can be ob-

tained easily from Theorem 1.

Theorem 2 (Minimum energy filter for m−th
order state equation) The differential equations of
the second-order Minimum Energy Filter for the state
equation (54) and the observation equations (17) are
given by the equations (29) and

Ṗ (t) = −α · P + S−1 + CP + PC>

− P
(∑n

k=1(Γ̃vecse(Pr(Ak(E
∗))) +Dk(E∗)) 06×(m−1)6

0(m−1)6×6 0(m−1)6×(m−1)6

)
P ,

P (t0) = 16m ,

(56)

where we assume that the expressions G∗ and P lie in

the spaces Gm and R6m×6m, respectively. The appearing

expressions in Theorem 1 are replaced by

f(G) :=(matse(v1), v2, . . . , vm−1,06×1),

rt(G
∗) :=

( n∑
k=1

Pr(Ak(E∗),0(m−1)6×1
)
,

C(G∗, t) :=

((
−Ψ(G∗,t)
06(m−2)×6

)
16(m−1)

06×6 06×6(m−1)

)
.

All the other expressions from Theorem 1 stay un-

changed.

Proof Since product Lie groups are simply Lie groups

with the product topology, we can still apply the gen-

eral minimum energy filter of Saccon et al. [41]. The

Lie group Gm has dimension 6m such that the vec-

torized bilinear operator Z from (38), i.e. P results in

a 6m × 6m matrix. The definition of the function f

follows from the differential equations in (54). Simi-

larly to Theorem 1, the observations do not depend

on the whole state G = (E, v1, . . . , vm−1), but only

on E. This leads to the fact that rt, which is essentially

the left-trivialized differential of the Hamiltonian (i.e.

G−1d1H−(G,0, t)), vanishes after calculating the dif-

ferentials regarding v1, . . . , vm−1. Similarly, the Hessian

G−1 Hess1H−(G,0, t)[Gη] in Lemma 2 can be extended

by zeros. Furthermore, components v1, . . . , vm−1 ∈ R6

have a trivial geometry and do not contribute to cur-

vature and thus the corresponding connection functions

in Lemma 2 also do not influence curvature. Finally, we

can compute the expression

d1(d2H−(G,0, t))[Gη] = −df(G)[η]

= −(matse(v2), v3, . . . , vm−1,0)

and thus

vecg
(
d1(d2H−(G,0, t))[Gη]

)
=
(

06(m−1)×6 16(m−1)

06×6 06×6(m−1)

)
,

as we did in Lemma 2 for the special case. Together

with the adjoint operator in Ψ(G, t), we obtain the ex-

pression C. ut

4 Comparison with Extended Kalman Filters

As an alternative to the proposed approach, we also

suggest considering extended Kalman filters. For this

purpose, we will compare our approach to a state-of-

the-art discrete / continuous extended Kalman filter on

Lie groups [12] in Section 6. The Kalman filter approach

is valid in a more generalized scenario compared to

ours because the state space as well as the observation

space are matrix Lie groups, whereas we only consider

real-valued observations in Rn. On the other hand, one

needs to know that the covariance matrices of the model

and observation noise and the a posteriori distribution

are assumed to be Gaussian, which is in general not

true for non-linear observation dynamics.

Algorithm 1 Extended Kalman Filter for Lie Groups

Require: State G(tl−1), Covariance P (tl−1), Observations
yk(tl), k = 1, . . . , n

1: procedure Propagation on [tl−1, tl] : Integrate the follow-

ing differential equations

2: Ġ(t) = G(t)f(G(t))
3: Ṗ (t) = J(t)P (t) + P (t)(J(t))> + S

+1
4
E(adg(ε(t))S adg(ε(t))>)

+ 1
12

E
(
adg(ε(t))2

)
S + 1

12
SE
(
adg(ε(t))2

)>
4: G−(tl) = G(tl), P−(tl) = P (tl)

5: procedure Update:

6: Kl = P−(tl)H>l
(
HlP

−(tl)H>l +Ql
)−1

7: m−
l|l = Kl

∑n
k=1

(
yk(tl)− hk(G−(tl))

)
8: G(tl) = G−(tl) Exp(matg(m−

l|l))

9: P (tl) = Φ(m−
l|l)
(
112 −KlHl

)
P−(tl)Φ(m−

l|l)
>

The extended Kalman Filter from [12] is summa-

rized in Algorithm 1 and has already been adapted to

our problem for real-valued observations. In line 7 the

residual is expressed as direct difference which is a spe-

cial case of [12]. The function Φ in line 9 on G is shown

in Appendix E.

In the next section, we will adapt the Algorithm 1

to different scenarios: to a filtering problem with linear
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observations as well as to our nonlinear filtering prob-

lem with a projective camera (cf. (16), (17)).

Remark 6 Note that the extended Kalman filter

from [12] requires a differential equation (that is not

only driven by noise) in order to propagate the state, i.e.

Ė(t) = E(t)
(
f(E) + δ(t)

)
, where f is non-trivial. Oth-

erwise the update step of the extended Kalman filter

is not significant because update and correction steps

in the extended Kalman filter are separated. This is

the reason why we only compare it to the second-order

model where f 6≡ 0.

4.1 Derivations for Linear Observations

In the scenario of linear observations the state equa-

tion stays unchanged, i.e. is identical to (16). Similarly

to [51] we use the following linear observation equations:

yk(t) = E(t)ak + εk(t), k ∈ [n], (57)

where E(t) ∈ SE3 is the first component of G(t) ∈ G
and ak ∈ R4 are vectors that model the linear trans-

formation of the state G. Again, εk(t) ∈ R4 are the

observation noise vectors.

In this case, the Minimum Energy Filter can be

derived much more easily than in the non-linear case.

Thus, for the compactness of presentation, we will skip

the proof of the following propositions.

Proposition 2 The Minimum Energy filter for the

constant acceleration model (16) and linear observation

equations (57) is given by the equations (29) and (30)

where the function Ak for G = (E, v) is replaced by

Ak(G) =E>Q(Eak − yk)a>k , (58)

and the components (i, j), i, j = 1, . . . , 6 of the matrix

Dk(G) ∈ R6×6 are given by

(Dk(G))i,j = ζki (E)(Ej), Ej := matse(e
6
j ) , (59)

with ζk(E)(·) : se3 → R6 given by

matse(ζ
k(E)(η1))

:= Pr
(
η>1 Q(Eak − yk)a>k + E>Qη1aka

>
k

)
.

(60)

Here, Q ∈ R4×4 is a symmetric and positive definite

matrix (cf. (19)). All other expressions from Theorem 1

stay unchanged.

Since the linear observation model is a special case

of the approach in [12] we only need to modify the cor-

responding expressions in Algorithm 1 which we sum-

marize in the following proposition.

Proposition 3 The Extended Kalman Filter for the

constant acceleration model (16) and linear observation

equations (57) is given by Algorithm 1 where the matrix

Hl :=
∑n
k=1H

k
l is given by

Hk
l =


vecse(Pr(E(tl)

>e41a
>
k ))> 01×6

vecse(Pr(E(tl)
>e42a

>
k ))> 01×6

vecse(Pr(E(tl)
>e43a

>
k ))> 01×6

vecse(Pr(E(tl)
>e44a

>
k ))> 01×6

 ∈ R4×12 (61)

and the function J(t) ([12, Eq. (52)]) is provided

by (114) in Appendix E.

Remark 7 Note that (61) is different from [12,

Eq. (111)] because of the additive instead of multiplica-

tive noise term, and consequently is not consistent with

the group structure of SE3.

4.2 Derivations for Nonlinear Observations

The adaption of the extended Kalman Filter [12] to our

state (16) and observation (17) equation is provided by

the following proposition:

Proposition 4 The extended Kalman filter from [12]

for our state (16) and observation (17) equation is given

by Algorithm 1 where the expressions J(t) and Hl are

provided in the equations (114) and (113), respectively,

see Appendix E.

5 Numerical Geometric Integration

The numerical integration of the optimal state differen-

tial equation (29) requires respecting the geometry of

the Lie group. We use the implicit Lie midpoint rule

for integration of the differential equation of the op-

timal state G∗ (29) as proposed in [20]. We need to

modify the method since we defined state space G as

left invariant Lie group. Instead, in [20], only right-

invariant Lie groups are investigated. The adaption to

left-invariant Lie groups is straightforward and leads

to the following integration schemes: for a discretiza-

tion t0 < t1 < · · · < tn with equidistant step size

δ = tk − tk−1 for all k, we integrate the differential

equation of the optimal state (29) using the scheme

G(tk+1) = G(tk) Exp(Ξ) , (62)

with Ξ = δ
(
f(G(tk) Exp(Ξ/2)))

−matg(P (tk) vecg(rt(G(tk) Exp(Ξ/2)))
)
.

(63)

For each k the matrix Ξ is received by a fixed point

iteration of (63). For the integration of equation (30),



12 J. Berger et al.

we need to consider that this is a special kind of the

matrix Riccati differential equation for which methods

exist that ensure that the solution is positive definite.

As shown in [17], a numerical integration method will

preserve positive definiteness if and only if the order

of the method is one. By taking down (30) as general

Riccati differential equation

Ṗ (t) = A(t)P (t) + P (t)A(t)> − P (t)B(t)P (t) + C(t) ,

(64)

with symmetric matrices B(t) and C(t), the implicit

Euler integration method is given by

P (tk+1) =P (tk) + δ
(
AP (tk+1) + P (tk+1)A>

− P (tk+1)BP (tk+1) + C
)
,

(65)

which can be expressed by the algebraic Riccati equa-

tion for which an unique solution exists [31] that can

be found by standard solvers, e.g. CARE.

6 Experiments

In this experimental section, we will evaluate the ac-

curacy of the proposed minimum energy filter for ego-

motion estimation. First we will provide experiments

on synthetic data to exclude external influences and to

show robustness against measurement noise. Then we

will consider real world experiments on the challeng-

ing KITTI benchmark and compare our method with

a state-of-the-art method [19]. Finally, to evaluate the

theoretical performance of the filter, we will also com-

pare to the state-of-the-art extended Kalman filter [12]

in a controlled environment.

6.1 Synthetic Data

Before considering real-life sequences, we first evaluate

synthetic scenes to have full control on the regularity

on the camera track. We generate 3D scenes by ray-

tracing simple geometric objects (cf. Fig. 3), which also

enables us to acquire correctly induced optical flow and

depth maps. In order to gain a realistic camera behav-

ior, we use the tracks from the KITTI visual odometry

training benchmark which were determined by an iner-

tial navigation system in a real moving car. We start

with considering the case of perfect measurements (Sec-

tion 6.1.1) and demonstrating robustness against differ-

ent kinds of noise in Section 6.1.2.

Fig. 3: Synthetic sequence (top) generated by a sim-

ple ray tracer. To provide realistic camera tracks we

used ground truth trajectories from the KITTI odom-

etry benchmark and computed the corresponding in-

duced optical flow (mid) and the depth map (bottom).

The corresponding color encodings for direction of op-

tical flow and depth map are on the right hand side.

6.1.1 Evaluation on Noiseless Measurements

First, we evaluate the proposed filter on the true opti-

cal flow. To avoid overfitting, we set a relatively small

weight onto the weighting matrix for the data term,

i.e. Q = 0.1/n, where n is the number of observations.

We set the weighting matrix S to the block diagonal

matrix containing the matrices Si, i.e.

S = blockdiag(S1, . . . , Sm) , (66)

where m denotes the order of the kinematic model and

the S1 = diag(s1, s1, s1, s2, s2, s2) with s1 = 10−2 and

s2 = 10−5. The decay rate is set to α = 2 and the

integration step size to δ = 1/50.

As demonstrated in Fig. 4, the proposed filters of

different order show a similar rotational error since the

ground truth rotation is often constant and influenced

by (physical) noise. That is possibly caused by the low

temporal resolution of 10 Hz, not being able to give
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Fig. 5: Different noise models for the observed data (op-

tical flow, cf. Fig. 3): top left: additive Gaussian noise

(µ = 0, σ2 = 0.001), top right: additive uniform noise

(µ = 0, σ2 = 0.001), bottom left: multiplicative Gaus-

sian noise (µ = 1, σ2 = 1), bottom right: multiplicative

uniform noise (µ = 1, σ2 = 1).

sufficient information on the kinematics. On the con-

trary, in the translational part we can see that the

higher-order models work significantly better than our

first-order model [9], but that third- and fourth-order

methods perform fairly the same. From this we can con-

clude that kinematics of fifth- or even higher-order will

not improve performance regarding this kind of camera

tracks.

6.1.2 Evaluation on Noisy Measurements

To evaluate the robustness against noise, we altered

the true optical flow measurements by multiplicative

and additive noise, each being distributed uniformly or

Gaussian, see Fig. 5. The proposed method determines

camera motion using the same parameters as in Section

6.1.1. Comparison to the ground truth is achieved us-

ing the geodesic distance on SE3 in order to avoid two

separate error measures for translation and rotation,

i.e.

dSE3
(E1, E2) := ‖vecse(Log(E−11 E2))‖2 . (67)

The results in Tab. 1 show that higher-order mod-

els outperform the first-order model with the excep-

tion of very high noise levels where the data does not

contain sufficient information to correctly estimate a

higher-order kinematic.

Remark 8 Please note that our model currently does

not model noise on depth maps explicitly since it only

allows additive noise on the flow measurements as in-

troduced in (17). However, we think that the noise term

ε should also compensate small deviations of the depth.

Table 1: Quantitative evaluation of proposed methods

(order 1 to 4) measuring the geodesic error (cf. (67))

w.r.t. ground truth camera motion. As input data we

used noisy flow observations with the following noise

models: additive Gaussian (AG, µ = 0), additive uni-

form (AU, µ = 0), multiplicative Gaussian (MG, µ = 1)

and multiplicative uniform (MU, µ = 1) for different

variances σ2. For intense noise (multiplicative: σ2 >

10−1, additive: σ2 > 10−4), the first-order method per-

forms better than higher-order models since it is more

robust against noise. In contrast, for moderate noise

levels, higher-order kinematics are more appropriate.

noise σ2 1st order 2nd order 3rd order 4th order

MG
100 0.2162 0.2759 0.2821 0.2866

MU 0.2856 0.3840 0.3705 0.3705

MG
10−10.1597 0.1644 0.1485 0.1423

MU 0.2072 0.2596 0.2367 0.2287

MG
10−20.1417 0.1184 0.1041 0.1011

MU 0.1517 0.1353 0.1143 0.1082

MG
10−30.1283 0.0987 0.0844 0.0808

MU 0.1300 0.0952 0.0808 0.0777

AG
10−30.2859 0.4355 0.4318 0.4385

AU 0.4835 0.7431 0.7175 0.7071

AG
10−40.1598 0.1695 0.1688 0.1701

AU 0.2176 0.2341 0.2216 0.2193

AG
10−50.1384 0.1157 0.1010 0.0974

AU 0.1263 0.1130 0.1009 0.0968

w/o 0 0.1264 0.0893 0.0783 0.0757

6.1.3 Evaluation of Kinematics

In the last section we showed that the proposed method

is robust against different kinds of measurement noise.

Now we evaluate the proposed minimum energy filters

with higher-order kinematic model for camera tracks

of different complexity. For this purpose, we generate

camera tracks for the kinematic models (first to fourth

order) by (geometric) numerical integration of corre-

sponding differential equation (54) for m ∈ {1, 2, 3, 4}
where we set v0 ≡ 0. In order to obtain reasonable paths

we use non-trivial initializations for (E0, v
0
1 , v

0
2 , v

0
3).

Then we generate synthetic sequences for the different

kinematic tracks and use the ground truth optical flow

and depth maps as input for the proposed filters.

The proposed method uses the parameters Q =

0.1n−112 with n = 1000; and S was chosen as in (66),

whereas s1 = 1, s2 = 0.001 and α = 0.

In Fig. 6 we visualize the geodetical error (67) as

well as the camera track reconstructions. It becomes

apparent that for a camera track with constant veloc-
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Fig. 4: Comparison of the rotational error in degree (top) and the translational error in meters (bottom) of the

proposed minimum energy filters with kinematic state equations of orders one (see [9]) and two, three and four

(this work). The dotted lines show the error averaged over all frames. We used a real camera track from sequence 0

of the KITTI visual odometry benchmark and generated synthetic sequences with induced depth maps and optical

flow. The rotational errors are similar through all frames although the higher-order methods converge faster in

the first iterations. In frames 20–90, the motion of the camera is almost constant and the filters perform similarly.

However, the translational error of the first order method significantly changes in frames 90–150 and 175–200

because the constant velocity assumption is violated by curves in the trajectory.

ity (Fig. 6b) the minimum energy filter with first-order

kinematics [9] performs best and reaches the highest ac-

curacy. For the other tracks with higher-order kinemat-

ics (cf. Figures 6d, 6f and 6h), the proposed filters with

higher-order kinematic model work superiorly to [9].

6.2 Evaluation with Realistic Observations

In order to demonstrate that the minimum energy fil-

ter with higher-order state equations also works un-

der real world conditions, we evaluate our approach

on the challenging KITTI odometry benchmark [18].

This benchmark does not contain ground truth data

for optical flow, and depth maps can only be obtained

from external laser scanners. Thus, we compute optical

flow and depth maps in a preprocessing step using the

freely available method by Vogel et al. [47] which only

requires image data. Although this method is the top

ranked method on the KITTI optical flow benchmark,

its results still contain relevant deviations from the true

solution and thus provide realistic observation noise to

evaluate the performance of our proposed filter. As the

preprocessed data of [47] is dense, it causes a high com-

putational effort. Therefore, we only use a sparse sub-

set of data points which are selected randomly. In Sec-

tion 6.2.2 we will show that a small number of observa-

tions is sufficient for good reconstructions.

6.2.1 Quantitative Evaluation of First and

higher-order Models

For our quantitative evaluations on the KITTI bench-

mark in Table 2, we initialize our first [9] and higher-

order approaches with the corresponding identity ele-

ment on the Lie group, i.e. G0 = Id, and set the cor-

responding matrices P0 to the identity matrices. The

quadratic forms of the penalty term of the model noise δ
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(g) reconstruced track: fourth order kinematics
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(h) geodetical error on a fourth order kinematic track

Fig. 6: Reconstruction of the camera tracks (left column) and evaluation of the geodetical error w.r.t. ground

truth (left column) as computed by the proposed filter with kinematics of order 1, 2, 3 and 4. We evaluated

the performance on simulated camera tracks with kinematic models of different orders: constant velocity (b),(a),

constant acceleration (d),(c) as well as third (f),(e) and fourth (h),(g) order kinematics. In the constant velocity

scenario (b), the first-order filter performs best. On the other scenarios (d), (f), (h), the higher-order methods are

superior and lead to the best path reconstructions.
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are set as shown in (66) with s1 = 10−2 and s2 = 10−5.

To increase the influence of the data term, we set the

weighting matrix to

Q := 1
n12 , n = 1000 . (68)

On the one hand side, this high-weighting leads to less

smoothed camera trajectories, but on the other hand

side minimizes the observation error, which is desirable

for visual odometry applications. For comparison we

also present in Table 2 the performance measures of

the odometry method [19].

We emphasize that the first-order approach [9] and

second-order method from Theorem 1 perform better

in the case of camera motion reconstruction than the

proposed higher-order (> 2) models with generalized

kinematics from Theorem 2. The reason for that is that

the real camera motion is influenced by model noise, in-

duced by jumps of the camera, to which the first-order

method can adapt faster. Higher-order models smooth

the camera trajectories, which in this case is unfortu-

nate. However, they will be beneficial if the actual cam-

era motion behaves according to the models, as shown

in the experiments in Section 6.1.3.

Please note that our method currently is not de-

signed to be robust against outliers in the observation.

In contrast, the approach of Geiger et al. [19] uses addi-

tional precautions to eliminate violation of the assump-

tion of a single rigid body motion, see e.g. sequence 3

in Table 2.

6.2.2 Determination of Optimal Number of

Observations

Since the evaluation of the functions Ak and Dk in The-

orem 1 as well as the accurate numerical integration in

Section 5 are expensive, we are looking for a good trade-

off between the number of required measurements and

accuracy. In Table 3 we evaluate the geodetical error for

a different number of observations n. For n = 1, our pro-

posed filters do not converge since they are numerically

instable. For n = 5, . . . , 20, the geodetical error is fairly

small but reaches a minimum for n = 50. For n < 5,

the error increases because the ego-motion cannot be

reconstructed uniquely (cf. Five-point-algorithm [36]).

Likewise, for n > 50, the error rises due to noisy mea-

surements averaged by the filter.

6.2.3 Influence of the Decay Rate α

In real sequences, the motion is usually not uniform

and changes due to acceleration and curves. As demon-

strated earlier, higher-order state equations that model

accelerations, jerks, etc. usually converge faster and

Table 3: Determination of the optimal number of mea-

surements n. We evaluated the mean geodetical error

our filter with different kinematic models (first to fourth

order) on a short sequence (10 frames) for different

numbers n of observations. Since the n observations are

selected randomly, we repeated the experiment 50 times

and averaged finally, to find a representative value. We

found an optimal number of measurements for n = 50.

n 1st order 2nd order 3rd order 4th order

1000 0.1205 0.1361 0.1311 0.1290
500 0.1070 0.1174 0.1116 0.1096
200 0.0915 0.0945 0.0902 0.0890
100 0.0764 0.0764 0.0739 0.0733
50 0.0667 0.0651 0.0638 0.0637

20 0.0715 0.0703 0.0687 0.0684
15 0.0709 0.0691 0.0674 0.0672
12 0.0718 0.0720 0.0702 0.0699
10 0.0749 0.0735 0.0716 0.0712
9 0.0751 0.0747 0.0726 0.0722
8 0.0772 0.0762 0.0742 0.0738
7 0.0735 0.0733 0.0717 0.0714
6 0.0786 0.0776 0.0757 0.0753
5 0.0789 0.0797 0.0778 0.0774
4 0.0856 0.0859 0.0837 0.0831
3 0.0917 0.0951 0.0928 0.0921
2 0.1005 0.1085 0.1058 0.1051

yield a better accuracy. However, higher-order models

are delayed since it takes some time until the informa-

tion from the observation is transported to the lowest

layer. Furthermore, if the motion changes quickly, then

higher-order models will still propagate wrong kinemat-

ics. For this reason, in [41] a decay α > 0 rate is intro-

duced and also adopted to our model. For α = 0, all

past information is preserved in the propagation within

the filter. For larger values of α, old information about

the trajectory has lower influence on the filter and is

less respected in future.

For the experiments we use the weighting matrix

Q = n−112, where n is the number of measurements.

Furthermore, we use S as in (66) with the values s1 =

5 · 10−2, s2 = 5 · 10−4. The integration step size is set

to δ = 1/50.

In Fig. 7, we visualize the influence of different val-

ues of α on the minimum energy filters of order 1 to 4.

For small decay rates α, the filters will converge faster

over time, but will also cause errors if the kinemat-

ics change. On the other hand, large decay rates adapt

more easily to spontaneous changes of kinematics. The

filters take longer to converge, however.
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Table 2: Quantitative evaluation of rotational (in degrees) and translational (in meters) error on the first 200

frames of the training set of the KITTI odometry benchmark. We compared the proposed higher-order method

(i.e. 2nd to 4th) with our first-order method from [9]. As a reference method, we also evaluated the approach by

Geiger et al. [19]. The first and second-order methods outperform the higher-order methods since they can fit more

easily to the non-smooth ego-motion data.

sequence 00 01 02 03 04 05 06 07 08 09 10

tr
a
n

s.
er

ro
r (Geiger [19])0.0272 0.0572 0.0255 0.0175 0.0161 0.0185 0.0118 0.0160 0.1166 0.0175 0.0147

1st order [9] 0.0284 0.0759 0.0188 0.0804 0.0165 0.0188 0.0122 0.0174 0.1142 0.0193 0.0205
2nd order 0.0356 0.0786 0.0289 0.0938 0.0210 0.0288 0.0153 0.0284 0.1153 0.0293 0.0417
3rd order 0.0358 0.0784 0.0290 0.0924 0.0216 0.0286 0.0175 0.0268 0.1153 0.0258 0.0342
4th order 0.0347 0.0782 0.0275 0.0918 0.0211 0.0277 0.0140 0.0257 0.1155 0.0240 0.0317

ro
t.

er
ro

r (Geiger [19])0.1773 0.1001 0.1552 0.1829 0.0970 0.1539 0.0829 0.1770 0.1589 0.1166 0.2001
1st order [9] 0.1773 0.1139 0.1504 0.2246 0.0836 0.1454 0.0765 0.1654 0.1444 0.0911 0.1829
2nd order 0.1996 0.1183 0.1430 0.2448 0.0805 0.1566 0.0703 0.2113 0.1676 0.1167 0.2388
3rd order 0.2402 0.1348 0.1872 0.2719 0.1090 0.1971 0.0875 0.2362 0.2053 0.1335 0.2628
4th order 0.2795 0.1466 0.2223 0.3120 0.1479 0.2335 0.1045 0.2709 0.2318 0.1630 0.2956
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Fig. 7: Evaluation of the translational error (in meters) of the minimum energy filter regarding the first, second,

third and fourth order state equation on the first 50 frames of sequence 0 of the KITTI odometry sequence. For

small values of α, the filter memorizes past information and converges fast, see Fig. (7a). Although higher-order

filters converge faster, they cause oscillation due to the time delay that is required to propagate information into

higher-order derivatives of the kinematics. Since for large values of α past information is neglected, the filters

converge slower and the difference between second, third and fourth order models become smaller, while the

oscillations disappear. Please note that for this experiments the weighting matrices S and Q are kept fixed. To

further reduce the error for large α we propose to adapt the weights.
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6.3 Comparison with the Extended Kalman Filters

6.3.1 Experiments with Linear Observation Equation

For the experiments in Fig. 8 we use four observation

equations (n = 4), and the vectors ak in (57) are chosen

as

ak = e4k , k ∈ [4] , (69)

to extract information from all directions. We gener-

ate the ground truth from an arbitrary initialization

by integration of (16) with multivariate Gaussian noise

with mean 012 and diagonal covariance matrix S = 112.

As shown in [12], we integrate the ground truth with

ten times smaller step sizes than the filtering equations

of extended Kalman and minimum energy filter. Af-

terwards we generate the observations with (61) and

Gaussian noise with covariance Q = 10−814 and set

the covariance matrices S and Q in Algorithm 1 to the

same values. However, the matrix Q for the minimum

energy filter in Proposition 2 is set to Q = 10014 to

give more weight to the observations for faster conver-

gence. Note that for the extended Kalman Filter the

choice Q = 10014 leads to a worse performance, which

is why we use the true covariance instead.

As a reference, we apply our own implementation

of the method by Bourmaud et al. [12] adapted to our

model. The results are demonstrated in Fig. 8. We sup-

pose that the main reason for the different performances

is that we compare a second-order (minimum energy fil-

ter) with a first-order (extended Kalman) filter.

6.3.2 Discussion on Extended Kalman Filter for

Non-linear Observations

We were not able to obtain convergence of this fil-

ter from a trivial (chosen as identity element of the

Lie group) or ground truth initialization. Since the ex-

tended Kalman did not converge for linear observa-

tions (4.1) from wrong initializations, we presume that

the non-linearities of our observation equations are in-

tractable for the approach from [12].

7 Limitations

Our proposed method requires good measurements in

terms of optical flow and depth maps in order to re-

construct the camera motion correctly. Although we

showed on synthetic data that the proposed method

is robust against different kinds of noise, it is not ro-

bust against outliers, caused by independently moving

objects that violate the static scene assumption, or sim-

ply wrong computations of optical flow and depth maps.

Making our approach robust as component of a super-

ordinate processing stage, however, is beyond the scope

of this paper and left for future work.

In addition to optical flow, the proposed method

requires depth information which is expensive to obtain

if not available anyway, e.g. in stereo camera setups.

8 Conclusion & Future Work

We generalized the camera motion estimation ap-

proach [9] from a model with constant velocity assump-

tion to a more realistic model with constant accelera-

tion assumption as well as to a kinematic model which

respects derivatives of any (fixed) order. To the authors’

knowledge, this has not been done so far in the fields of

image processing and computer vision. For the resulting

second-order minimum energy filter with higher-order

kinematics, we provided all necessary derivations and

demonstrated that our approach is superior to our pre-

vious method [9] for both synthetic and real-life data.

We also compared our approach to the state-of-the-

art continuous-discrete extended Kalman filter on con-

nected unimodular matrix Lie groups [12] and showed

that in both cases the minimum energy filters is supe-

rior since it converges from imperfect initializations to

the correct solutions.

In the future, we want to investigate how to recon-

struct the camera motion (with constant acceleration)

jointly with the camera’s depth map from monocular

optical flow observations.

Appendix

A Kronecker products on se3

The Kronecker products ⊗se,⊗>se : R4×4 × R4×4 → R6×6 on
se3 are defined for matrices A,B ∈ R4×4 and η ∈ se3 through
vecse(AηB) =: (A ⊗se B) vecse(η) and vecse(Aη>B) =:
(A ⊗>se B) vecse(η). Since the explicit formulas for ⊗se,⊗>se
are quite uninformative, we do not provide them here.

B Properties of SE3 and G

B.1 Projection onto se3

The projection Pr : R4×4 → se3 is given by

Pr(A) :=1
2

diag((1, 1, 1, 0)>)
(
Adiag((1, 1, 1, 2)>)

−A> diag((1, 1, 1, 0)>)
)
.

(70)
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Fig. 8: Comparison between minimum energy filter with second-order kinematics (MEF) (red, cross) and extended

Kalman filter (CD-LG-EKF) [12] (green, square) with state equation (16) and observation equation (57) as derived

in Properties 2 and 3, respectively. We plotted the six components of the rigid motion of the ground truth

(GT) (blue, circle), the extended Kalman filter, and the minimum energy filter, i.e. (ω1, ω2, ω3, t1, t2, t3)> :=

(vecg(LogG(G))))1:6. Here, G is the corresponding element of the Lie group G. Further, we set the discretization

step size to δ = 0.1. Although we initialized the extended Kalman filter with the ground truth solution and added

only little observation noise, it diverges after a few steps whereas the minimum energy filter converges from a

wrong initialization to the correct solution within a few steps. The reason for that is that the approach [12] only

uses first-order approximation, whereas the minimum energy filter also includes second-order derivatives of the

observation function.

B.2 Adjoints, exponential and logarithmic map

The adjoint operator adse(matse(v)) can be computed for a
vector v ∈ R6 as follows

vecse
(
adse(matse(v))η) = advec

se (matse(v)) vecse(η)

:=

(
matso(v1:3) 03×3

matso(v4:6) matso(v1:3)

)
vecse(η) , (71)

where matso(v1:3) := (matse(v))1:3,1:3. This directly fol-
lows from the definition of the adjoint as Lie bracket, i.e.
adse(ξ)η := [ξ, η] where the Lie bracket [·, ·] : se3 × se3 → se3
is simply the matrix commutator on se3.

vecse(adse3(matse(v))η) = vecse([matse(v), η]) (72)

= vecse(matse(v)η14 − 14ηmatse(v)) (73)

=
(
matse(v)⊗se 14 − 14 ⊗se matse(v)

)
vecse(η) . (74)

A componentwise evaluation of (74) leads to (71). Since R6

is trivial, the adjoint representation on g parametrized by a
vector v ∈ R12 is

advec
g (matg(v)) =

(
advec

se (v1:6) 06×6

06×6 06×6

)
. (75)

The exponential map ExpSE3
: se3 → SE3 and the loga-

rithmic map on SE3 can be computed by the matrix exponen-
tial and matrix logarithm or more efficiently by the Rodrigues’

formula as in [34, p. 413f ].
Then the exponential map ExpG : se3 → SE3 for a

tangent vector η = (η1, η2) ∈ g and the logarithmic map
LogG : SE3 → se3 for G = (E, v) ∈ G are simply

ExpG(η) =(ExpSE3
(η1), η2) ∈ G , (76)

LogG(G) =(LogSE3
(E), v) ∈ g , (77)
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and similar for higher-order state spaces.

B.3 Vectorization of connection function

Following [1, Section 5.2], we can vectorize the connection
function ω of the Levi-Civita connection ∇ for constant η,
ξ ∈ g in the following way:

vecg(ωηξ) = vecg(ω(η, ξ)) = vecg(∇ηξ) = Γ̃vecg(ξ) vecg(η) ,

(78)

where Γ̃x is the matrix whose (i, j) element is the real-valued
function

(Γ̃γ)i,j :=
∑
k

(γkΓ
i
jk) , (79)

and Γ ijk are the Christoffel symbols of the connection function

ω for a vector γ ∈ R12. Similarly, permuting indices, we can
define the adjoint matrix Γ̃ ∗γ whose (i, j)-th element is given
by

(Γ̃ ∗γ )i,j :=
∑
k

(γkΓ
i
kj) . (80)

This leads to the following equality:

vecg(ωηξ) = Γ̃ ∗vecg(η)
vecg(ξ) . (81)

If the expression ξ in (78) is non-constant, we obtain the fol-
lowing vectorization from [1, Eq. (5.7)], for the case of the
Lie algebra se3, i.e.

vecse(∇ηxξ(x))

=Γ̃vecg(ξ(x)) vecse(ηx) + dvecse(ξ(x))[vecse(ηx)]

=Γ̃vecg(ξ(x)) vecse(ηx) +
∑
i

(ηx)i vecse(dξ(x))[Ei])

=Γ̃vecg(ξ(x)) vecse(ηx) +D vecse(ηx) , (82)

where the entries of the matrix D ∈ R6×6 can be computed
as

(D)i,j = (vecse(dξ(x)[Ej ]))i , Ej = matse(e6j ) , (83)

where e6j denotes the j-th unit vector in R6.

C Proofs

Proof (of Proposition 1) The tangent map is simply the dif-
ferential or directional derivative. For G1 = (E1, v1), G2 =
(E2, v2) ∈ G it holds TG2

LG1
: TG2

G → TLG1
(G2)G. Thus, we

can compute it for a η = (E2η1, η2) ∈ TG2
G = TE2

SE3×R6

as follows

TG2
LG1

◦ η = dLG1
(G2)[η]

= lim
τ→0+

τ−1
(
LG1

(G2 + τη)− LG1
(G2)

)
= lim
τ→0+

τ−1
(
L(E1,v1)((E2 + τE2η1, v2 + τη2))

− (E1E2, v1 + v2)
)

= lim
τ→0+

τ−1
(
(E1E2 + τE1E2η1, v1 + v2 + τη2)

− (E1E2, v1 + v2)
)

=(G1G2η1, η2) ∈ TG1G2
G = TLG1

(G2)G .

For G2 = Id = (14,06) and η = (η1, η2) ∈ g, it follows

TIdLG1
◦ η = (E1η1, η2) = L(E1,06)(η1, η2) =: G1η ∈ TG1

G .

Note that the adjoint of the tangent map of LG at identity can
be expressed as inverse of G = (E, v), i.e. for η = (η1, η2) ∈
TGG and ξ = (ξ1, ξ2) ∈ g

〈TIdL∗Gη, ξ〉Id =〈η, TIdLGξ〉G
=〈η1, Eξ1〉E + 〈η2, ξ2〉

=〈E−1η1, ξ1〉Idse3
+ 〈η2, ξ2〉

=〈L(E−1,06)
η, ξ〉Id .

Thus, TIdL
∗
Gη = L(E−1,06)

η. We will use the shorthand

G−1η := TIdL
∗
G for the dual of the tangent map of LG at

identity. ut

Proof (of Lemma 1) Since µ = (µ1, µ2), v are independent of
E the gradient d1H−(G = (E, v), µ, t) can be computed sep-
arately in terms of E, i.e. for η = (Eη1, η2) ∈ TGG

d1H−(G,µ, t)[η] =
(
dE

1
2
e−α(t−t0)

( n∑
k=1

‖yk − hk(E)‖2Q
)

[η1],

− dv〈µ1,matse(v)〉[η2]
)
.

The directional derivative regarding v can be computed by
the usual gradient on R6 which is given by

−dv〈µ1,matse(v)〉[η2] =− 〈vecse(µ1),dvv[η2]〉
=〈−vecse(µ1), η2〉 ,

(84)

such that dv〈µ1,matse(v)〉 = −vecse(µ1). For the directional
derivative of H− we first consider the directional derivative
of hk(E). Since hk(E) can also be written as

hk(E) := ((e43)>E−1gk(t))−1ÎE−1gk(t) , Î := ( 1 0 0 0
0 1 0 0 ) ,

(85)

the directional derivative (into direction ξ) can be derived by
the following matrix calculus.

dhk(E)[ξ] (86)

=d
(
((e43)>E−1gk)−1

)
[ξ]ÎE−1gk

+ ((e43)>E−1gk)−1d
(
ÎE−1gk

)
[ξ]

=− κ−1
k d((e43)>E−1gk)[ξ]κ−1

k ÎE−1gk

+ κ−1
k Îd(E−1)[ξ]gk

=− κ−1
k (e43)>d(E−1)[ξ]gkκ

−1
k ÎE−1gk

+ κ−1
k Îd(E−1)[ξ]gk

=− κ−1
k (e43)>(−1)E−1d(E)[ξ]E−1gkκ

−1
k ÎE−1gk

+ κ−1
k Î(−1)E−1d(E)[ξ]E−1gk

=κ−2
k (e43)>E−1ξE−1gk ÎE

−1gk − κ−1
k ÎE−1ξE−1gk , (87)
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where κk = κk(E) := (e43)>E−1gk. Then for the choice
ξ = Eη1 we find that

eα(t−t0)d1H−(G,µ, t)[Eη1] (88)

=−
n∑
k=1

tr
(
dhk(E)[Eη1](yk − hk(E))>Q

)
=−

n∑
k=1

tr
((
κ−2
k ((e43)>η1E

−1gk)ÎE−1gk − κ−1
k Îη1E

−1gk
)

· (yk − hk(E))>Q
)

=
n∑
k=1

tr
((
κ−1
k Îη1E

−1gk − κ−2
k ((e43)>η1E

−1gk)ÎE−1gk
)

· (yk − hk(E))>Q
)

=
n∑
k=1

tr
((
κ−1
k Îη1E

−1gk − κ−2
k ÎE−1gk(e43)>η1E

−1gk
)

· (yk − hk(E))>Q
)

=
n∑
k=1

tr
((
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)
η1E

−1gk(yk − hk(E))>Q
)

=
n∑
k=1

tr
(
E−1gk(yk − hk(E))>Q

(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)
η1
)

=
n∑
k=1

〈 (
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>
Q(yk − hk(E))g>k E

−>︸ ︷︷ ︸
=:Ak(E)

, η1
〉
Id.

(89)

Here we used that the trace is cyclic. We obtain the Rieman-
nian gradient on SE3 by projecting (cf. [1, Section 3.6.1]) the
left hand side of the Riemannian metric in (89) onto TE SE3,
which is for G = (E, v)

dEH−(G,µ, t) =e−α(t−t0) PrE
(
EAk(E)

)
=e−α(t−t0)

∑
k

E Pr
(
Ak(E)

)
,

(90)

with Ak(E) :=
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>
Q(yk −

hk(E))g>k E
−>, and PrE : GL4 → TE SE3 denotes the

projection onto the tangential space TE SE3 that can
be expressed in terms of PrE(E·) = E Pr(·). Besides,
Pr : GL4 → se3 denotes the projection onto the Lie algebra
se3 as given in (70).

Putting together (84) and (90) results in

d1H−(G,µ, t) =(
e−α(t−t0)

n∑
k=1

E Pr
(
Ak(E)

)
,−vecse(µ1)

)
∈ TGG .

(91)

ut

Proof (of Lemma 2) Eq. (43) can be easily found by consid-
ering a basis of se3 and the fact that Z is a linear operator
on the Lie algebra. Since the resulting matrix K(t) vecg(η) :=
Z(G∗, t) ◦ η depends only on t, the equation (44). Eq.(45) is
trivial since Z is linear.

1. With the symmetry of the Levi-Civita connection, i.e.

[η, ξ] = ∇ηξ −∇ξη , (92)

we gain the following equalities

vecg(Z(G∗, t) ◦ ω(G∗)−1Ġ∗η + Z(G∗, t) ◦ ω�
d2H−(G∗,0,t)η)

(43)
= K(t) vecg(ω(G∗)−1Ġ∗η + ω�

d2H−(G∗,0,t)η)

(40)
= K(t) vecg(∇−d2H−(G∗,0,t)η

−∇e−α(t−t0)Z(G∗,t)−1◦rt(G∗)η +∇ηd2H−(G∗, 0, t))

(92)
= K(t) vecg(−[d2H−(G∗, 0, t), η])

−∇e−α(t−t0)Z(G∗,t)−1◦rt(G∗)η

(81)
= K(t)

(
vecg([f(G∗), η])

− Γ̃ ∗
vecg(e−α(t−t0)Z(G∗,t)−1◦rt(G∗)) vecg(η)

)
(43)
= K(t)

(
vecg([f(G∗), η])

+ Γ̃ ∗−e−α(t−t0)K(t)−1 vecg(rt(G∗))

)
vecg(η

)
(75)
= K(t)

(
advec

g (f(G∗))

+ Γ̃ ∗−e−α(t−t0)K(t)−1 vecg(rt(G∗))

)
vecg(η)

=:K(t)B vecg(η) . (93)

The claim follows from the fact that the adjoints and the
Christoffel symbols on R6 are zero.

2. Since this expression is dual to the expression in 1. the
claim follows by using its transpose.

3. Recall that the Hamiltonian in (27) is given by

H−((E, V ), µ, t) = 1
2
e−α(t−t0)

( n∑
k=1

‖yk − hk(E)‖2Q
)

− 1
2
eα(t−t0)

(
〈µ1,matse(S−1

1 vecse(µ1))〉Id

+ 〈µ2, S
−1
2 µ2〉

)
− 〈µ1,matse(V )〉Id .

The Riemannian Hessian w.r.t. the first component can
be computed for G = (E, v) ∈ G, η = (η1, η2) ∈ g and the
choice µ = (µ1, µ2) = (04×4,06) as

eα(t−t0) vecg(G−1 Hess1H−(G,µ, t)[Gη])

= eα(t−t0) vecg
(
G−1∇Gηd1H−(G,0, t)

)
(94)

= eα(t−t0) vecg
(
∇ηG−1d1H−(G,0, t)

)
(95)

= vecg
(
∇η
( n∑
k=1

Pr(Ak(E)),−eα(t−t0) vecse(04×4)
))

(96)

=
( n∑
k=1

vecse
(
∇η1 Pr

(
Ak(E)

))
,06

)
=

n∑
k=1

(
Γ̃
vecg

(
Pr(Ak(E))

) vecse(η1)

+
∑
i

(η1)i vecse(dPr
(
Ak(E)

)
)[Ei])

)
.

(97)

Here, line (94) follows from the general definition of the
Hessian (cf. [1, Def. 5.5.1]). Line (95) holds because of
the linearity of the affine connection, the equation (96)
results from insertion of the expression in Lemma 1 and
(97) can be achieved with (82).
As next we calculate the differential dPr(Ak(E))[η1] in
(97) for an arbitrary direction η1. Since the projection
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is a linear operation (cf. (70)), i.e. dPr(Ak(E))[η1] =
Pr(dAk(E)[η1]), we require to calculate dAk(E)[η1]. By
using the product rule and the definition of Ak from (32)
we obtain

dAk(E)[η1]

=d
((
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>
Q(yk − hk(E))g>k E

−>)[η1]

=
(
d
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>

[η1]Q(yk − hk(E))g>k E
−>)

+
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>
Q
(

(−dhk(E)[η1])g>k E
−>)

+
(
(yk − hk(E))g>k dE−>[η1]

))
.

(98)

The directional derivative of
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)

is

d
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)
[η1]

=− κ−2
k (e43)>dE−1[η1]gk Î

+ 2κ−3
k (e43)>dE−1[η1]gk ÎE

−1gk(e43)>

− κ−2
k ÎdE−1[η1]gk(e43)>

=κ−2
k (e43)>E−1ηE−1gk Î

− 2κ−3
k (e43)>E−1η1E

−1gk ÎE
−1gk(e43)>

+ κ−2
k ÎE−1η1E

−1gk(e43)> .

(99)

By inserting the directional derivatives (99), (87) and
dE−>[η1] = −(E−1η1E−1)> into (98), we obtain the
vector-valued function ζk(E)(·) : se3 → R6 defined as

matse(ζk(E)(η1)) := Pr
(
dAk(E)[η1]

)
(100)

= Pr

((
κ−2
k (e43)>E−1η1E

−1gk Î

− 2κ−3
k (e43)>E−1η1E

−1gk ÎE
−1gk(e43)>

+ κ−2
k ÎE−1η1E

−1gk(e43)>
)>

Q
(
yk − hk(E)

)
g>k E

−>

+
(
κ−1
k Î − κ−2

k ÎE−1gk(e43)>
)>
Q
((
κ−1
k ÎE−1η1E

−1gk

− κ−2
k (e43)>E−1η1E

−1gk ÎE
−1gk

)
g>k E

−>

−
(
yk − hk(E)

)
g>k E

−>η>1 E
−>
))

.

Using the basis {Ej}6j=1 of se3, with Ej := matse(e6j )

we define, as in (83), the following matrix Dk(E) ∈ R6×6

with components

(Dk(E))i,j := ζki (Ej) . (101)

By using the equation (82) we find that

vecse
(
∇η1 Pr(Ak(E))

)
=
(
Γ̃Pr(Ak(E)) +Dk(E)

)
vecse(η1) .

Insertion of this expression into (97) leads finally to the
desired result, i.e.

eα(t−t0) vecg(G−1 Hess1H−(G,µ, t)[Gη])

=

(∑n
k=1(Γ̃vecse(Pr(Ak(E))) +Dk(E)) 06×6

06×6 06×6

)
vecg(η) .

4. The Riemannian gradient of the Hamiltonian regarding
the second component is at zero, thus we obtain

d2H−(G,0, t) =
(
−matse(v),0

)
= −f(G) . (102)

Computation of differential regarding the first component
at η = (Eη1, η2) ∈ TGG results in

d1(d2H−(G,0, t))[η] = −df(G)[η]

=− d(E,v)(matse(v),0)[η]

=− (matse(η2),0) .

Finally, we compute the complete expression which is for
η = (η1, η2) ∈ g and G∗ = (E, v) ∈ G

vecg(Z(G∗, t) ◦ d1(d2H−)(G∗, 0, t) ◦ TIdLG∗η)

=K(t) vecg(d1(d2H−)(G∗, 0, t)[Eη1, η2])

=−K(t) vecg((matse(η2),0))

=−K(t)

(
06×6 16

06×6 06×6

)
vecg(η) .

(103)

5. The following duality holds

d2(d1H−(G∗, 0, t)) =(d1(d2H−(G∗, 0, t)))∗

=− (dG∗f(G∗))∗ ,
(104)

as well as the following duality rule for linear operators
f, g : g → g∗ (i.e. f∗, g∗ : g → g∗ by the identification
g∗∗ = g) and η, ξ ∈ g,

〈(g∗ ◦ f∗)(η), ξ〉Id = 〈f∗(η), g(ξ)〉Id
=〈η, (f ◦ g)(ξ)〉Id = 〈(f ◦ g)∗(η), ξ〉Id ,

(105)

from which follows

(g∗ ◦ f∗) = (f ◦ g)∗ . (106)

Note that for g = se3 we replace the Riemannian met-
ric 〈·, ·〉 by the trace, and that the dual notation can be
replaced by the transpose.
Applying the vecg− operation for η ∈ g gives

vecg(TIdL
∗
G∗ ◦ d2(d1H−)(G∗, 0, t) ◦ Z(G∗, t) ◦ η)

(104)
= − vecg(TIdL

∗
G∗ ◦ (df(G∗))∗ ◦ Z(G∗, t) ◦ η)

(106)
= − vecg((df(G∗) ◦ TIdLG∗)∗ ◦ Z(G∗, t) ◦ η)

(103)
= −

(
06×6 06×6

16 06×6

)
vecg(Z(G∗, t) ◦ η)

=−
(
06×6 06×6

16 06×6

)
K(t) vecg(η) .

6. It holds for η = (η1, η2) ∈ g and the definition of the
Riemannian Hessian that

Hess2H−(G,µ, t)[η] = ∇(η1,η2)d2H−(G,µ, t) . (107)

The Riemannian gradient of the Hamiltonian regarding
the second component can be computed for G = (E, v) ∈
G as

d2H−(G,µ, t)

=
(
−eα(t−t0) matse(S−1

1 vecse(µ1))−matse(v), (108)

− eα(t−t0)S−1
2 µ2

)
.
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Inserting (108) into (107) results in

e−α(t−t0) Hess2H−(G,µ, t)[η]

=−∇(η1,η2)

(
matse(S−1

1 vecse(µ1)) + matse(v), S−1
2 µ2

)
=− Prg

(
dµ(matse(S−1

1 vecse(µ1)) + matse(v))[η],

dµ(S−1
2 µ2)[η]

)
=−

(
Pr
(
matse(S−1

1 vecse(η1))
)
, S−1

2 η2

)
=−

(
matse(S−1

1 vecse(η1)), S−1
2 η2

)
,

where Prg : R4×4 × R6 → g denotes the projection onto
the Lie algebra g. Note that the second component of the
projection is trivial.
This result coincides with [41] where the Hessian of the
Hamiltonian regarding the second component is com-
puted directly. Applying the vecg−operation leads to

vecg( Hess2H−(G,µ, t)[TIdLGη])

=− eα(t−t0) vecg
(

matse(S−1
1 vecse(η1)), S−1

2 η2

)
=− eα(t−t0)((S−1

1 vecse(η1))>, (S−1
2 η2)>)>

=− eα(t−t0)
(
S−1
1 06×6

06×6 S−1
2

)
︸ ︷︷ ︸

=:S−1

vecg(η) .

Now we apply the vecg-operation to the expression
Z(G∗, t) ◦Hess2H−(G∗, 0, t) ◦ Z(G∗, t):

vecg
(
Z(G∗, t) ◦Hess2H−(G∗, 0, t)[Z(G∗, t)(η)]

)
=K(t) vecg

(
Hess2H−(G∗, 0, t)[Z(G∗, t)(η)]

)
=− eα(t−t0)K(t)S−1 vecg(Z(G∗, t)(η))

=− eα(t−t0)K(t)S−1K(t) vecg(η) .
ut

D Christoffel symbols

The Christoffel symbols Γkij , i, j, k ∈ {1, . . . , 6} for the Rieman-
nian connection on SE3 are given by

Γ3
12 = Γ1

23 = Γ2
31 =1

2
,

Γ2
13 = Γ3

21 = Γ1
32 =− 1

2
,

Γ6
15 = Γ4

26 = Γ5
34 =1 ,

Γ5
16 = Γ6

24 = Γ4
35 =− 1 .

and zero otherwise. Note that this Christoffel symbols are
similar to these of the kinematic connection in [52]. However,
for the Riemannian connection, we need to switch the indexes
i and j.

E Derivations for Extended Kalman Filter

The function Φ : R12 → R12×12 in Alg. 1 is

Φ(v) =

(
ΦSE3

(v1:6) 06×6

06×6 16

)
,

whereas the function ΦSE3
is given in [42, Section 10] (cf. [12,

Eq. (17)]).

E.1 Derivations for non-linear Observations

The expression of Hl that is defined in [12, Eq. (59)] is simply
the Riemannian gradient of the observation function hk, i.e.

Hl :=
n∑
k=1

dhk(G(tl)) ,

where hk is defined as in (85); and the dhk can be computed
component-wise (for j = 1, 2) for G(tl) = (E(tl), v(tl)) by the
directional derivative for a direction Gη ∈ TGG.

dhjk(G)[Gη] = d
(
(e43E

−1gk)−1e4jE
−1gk

)
[(Eη1, η2)] (109)

=κ−2
k e43η1E

−1gke
4
jE
−1gk − κ−1

k e4j η1E
−1gk (110)

=〈
(
κ−2
k E−1gke

4
jE
−1gke

4
3 − κ

−1
k E−1gke

4
j

)>
, η1〉 (111)

=:〈ρjk(G), η1〉 , (112)

where the second last line follows from the definition of the
Riemannian metric on SE3, i.e. 〈η, ξ〉Id = η>ξ, and the fact
that the trace is cyclic. By projection of ρ1k(G(tl)) onto the Lie
algebra se3 and by vectorization, we obtain the Riemannian
gradient. Stacking the vectors leads to the Jacobian Hl ∈
R2×12, which is provided through

Hl =
l∑

k=1

(
vecse(Pr(ρ1k(tl)))> 01×6

vecse(Pr(ρ2k(tl)))> 01×6

)
. (113)

Next, we consider the calculation of the function J(t) in
Alg. 1 in line 3. Following [12], J(t) can be calculated as

J(t) = F (t)− adg(f(G(t))) + 1
12
C(S) , (114)

where the differential of F (t) = df(G(t)) can be computed as

F (t) =

(
06×6 16

06×6 06×6

)
. (115)

For a diagonal weighting matrix S, we find that in (114) the
function C can be computed for diagonal weighting matrices
S as

C(S) =

((
Ξ 03×3

03×3 Ξ

)
06×6

06×6 06×6

)
, (116)

where Ξ = −diag((S22 + S33, S11 + S33, S11 + S22)>), and
the adjoint in (114) can be computed with (75).
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