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Abstract We present an approach to jointly estimat-

ing camera motion and dense structure of a static scene

in terms of depth maps from monocular image sequences

in driver-assistance scenarios. At each instant of time,

only two consecutive frames are processed as input data

of a joint estimator that fully exploits second-order in-

formation of the corresponding optimization problem

and effectively copes with the non-convexity due to

both the imaging geometry and the manifold of motion

parameters. Additionally, carefully designed Gaussian

approximations enable probabilistic inference based on

locally varying confidence and globally varying sensi-

tivity due to the epipolar geometry, with respect to

the high-dimensional depth map estimation. Embed-

ding the resulting joint estimator in an online recursive

framework achieves a pronounced spatio-temporal fil-

tering effect and robustness.
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We evaluate hundreds of images taken from a car

moving at speed up to 100 km/h and being part of

a publicly available benchmark data set. The results

compare favorably with two alternative settings: stereo

based scene reconstruction and camera motion estima-

tion in batch mode using multiple frames. They, how-

ever, require a calibrated camera pair or storage for

more than two frames, which is less attractive from a

technical viewpoint than the proposed monocular and

recursive approach. In addition to real data, a synthetic

sequence is considered which provides reliable ground

truth.

Keywords structure from motion · variational

approach · recursive formulation · dense depth map

1 Introduction

1.1 Overview and Motivation

Computer vision research has a strong impact on driver

assistance technology. Besides designing dedicated de-

tectors for specific object classes (Enzweiler and Gavrila

2009; Gerónimo et al 2010), current major trends in-

clude low-level estimation of dense scene structure from

stereo sequences (Wedel et al 2008), the transition to

monocular imaging sensors (Weishaupt et al 2010; New-

combe and Davison 2010), and context-based 3D scene

representation and labeling supported by high-level as-

sumptions and constraints (Wojek et al 2010).

This paper focuses on the low-level task to jointly

estimate dense scene structure and egomotion under

minimal assumptions, adverse conditions and require-

ments, that are typical for driver assistance scenarios –

see Fig. 1:
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Fig. 1 (a)–(b) Two consecutive frames of the Bend se-
quence (see Sect. 5.1) with large displacements up to 35 pixels
induced by a fast moving camera. Our approach jointly es-
timates, from sparse noisy displacement measurements, (c)
dense depth maps and (d) camera motion in an online
recursive framework. Reconstruction of dense scene struc-
ture based on the depth maps from the camera’s viewpoint
(green), and the corresponding camera track (red).

– Online joint estimation from only two consecutive

frames in view of on-board implementations later

on;

– No assumptions about scene structure in order to

cope with arbitrary scenes;
– No additional input (e.g. odometer readings) besides

internal camera parameters estimated offline (cali-

bration);

– Ability to cope with large displacements induced by

a fast moving camera;

– Thoroughly annotation of all results by confidence

estimates;

– Comprehensive evaluation using image sequences re-

corded in real scenarios.

In this connection, the major issue to be addressed con-

cerns the design of an integrated approach that ensures

sufficient regularization to achieve robust and accurate

estimation, without compromising real-time capability

through unrealistically complex computations.

Our approach therefore combines highly accurate nu-

merics on the low-dimensional Euclidean manifold in

order to disambiguate and track translational and rota-

tional egomotion from ill-posed two-frame displacement

estimates, with less accurate variational models for es-

timating high-dimensional scene structure, leading to

efficient overall inference. Applying the resulting online

joint estimator within a recursive prediction-estimation

loop to an image sequence achieves favorable spatio-

temporal filtering and increased robustness.

The estimates computed with our approach pro-

vide a basis for subsequent tasks like obstacle and colli-

sion warning, and further related problems of advanced

scene analysis, to be considered in future work.

1.2 Scope

The task of deriving scene structure and camera move-

ment from a monocular camera is – compared to a

stereo setup – a much more challenging one (see dis-

cussion in Sect. 3.1.2). However, the considered appli-

cation in an automotive scenario in particular requires

very reliable information. Thus, a sound theoretical ba-

sis is as important as real-time capabilities. In this work

we therefore focus on the theoretical justification of the

proposed method. Probabilistic formulation helps to in-

terpret handling of inaccurate data (Sect. 3) and the

variational point of view provides insights and guaran-

tees concerning convergence of the numerics (Sect. 4).

In favor of a comprehensive discussion of the ap-

proach, we restrict ourselves to static scenes. We con-

sider this a reasonable intermediate step towards the

even more challenging case of dynamic scenes being

subject of future work.

Furthermore, for now we refrain from refining our

research implementation towards real-time speed, al-

though the approach is designed with respect to real-

time-applications due to its recursive nature and re-

striction to two frames, see Sect. 5.2.1.

The unknown global scale of the scene and camera

translation can not be measured from observed mo-

tion in this setup. Although important for real appli-

cations, we here do not investigate approaches to re-

construct this scalar e.g. from known dimensions of ob-

jects. However, the probabilistic framework easily al-

lows to integrate even weak and sporadic sensor data

(e.g. the scalar velocity) that are available in practice,

see Sect. 3.1.3.

In general, the design resorts to few established and

well understood components to reduce the number of

factors which influence the quality of the results. The

experimental section aims to demonstrate that the pro-

posed concept is correct and the results provide a base-

line for more enhanced implementations tuned for more

specific applications.
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1.3 Related Work

Most approaches to scene reconstruction rely on stereo

imaging or multiple view reconstructions in batch mode.

In the automotive context stereo set-ups dominate for

estimating the scene structure (Yamaguchi et al 2012;

Geiger et al 2010; Hirschmüller 2008). They directly

extend to measure optical flow to derive scene flow in-

formation (Rabe et al 2010; Wedel et al 2008). How-

ever, they are only relevant for sensing close-up ranges

at low speeds, due to the small baseline in driver as-

sistance scenarios, require extensive calibration and are

less attractive than just a single camera from the tech-

nological system oriented viewpoint.

Factorization (Sturm and Triggs 1996) and bundle

adjustment (Triggs et al 2000) have become a mature

technology for jointly determining camera and scene

structure from tracked features. While this requires to

accumulate several frames and more expensive numer-

ics, recent local and more efficient approaches, e.g. for

visual odometry (Mouragnona et al 2009; Konolige and

Agrawal 2008), entail only sparse representations of the

scene structure. A more recent approach (Lin et al 2011)

jointly estimates camera pose and a point cloud based

on two frames only. For improved robustness, it makes

use of edge features and imposes smoothness constraints

on the observed motion.

Dense methods for egomotion estimation from mon-

ocular (Newcombe et al 2011; Sheikh et al 2007) or

stereo data (Comport et al 2007; Valgaerts et al 2010)

make use of all image pixels and thus potentially pro-

vide higher accuracy than feature-based approaches,

e.g. PTAM (Klein and Murray 2007) or (Nister et al

2004), see Valgaerts et al (2012) for an excellent com-

parison.

Work on the reconstruction of accurate dense depth

maps from arbitrary multiple views includes Wendel

et al (2012); Graber et al (2011); Newcombe and Davi-

son (2010); Stühmer et al (2010). These works, however,

require the camera motion to be determined in a pre-

ceding step using feature tracking, e.g. PTAM (Klein

and Murray 2007). Other related approaches only al-

low for camera translation but no rotation (Weishaupt

et al 2010), or estimate the epipole but require images

to be aligned with respect to a common reference plane

(Irani et al 2002). Instead of relying on tracked features,

the recent approach by Newcombe et al (2011) deter-

mines the camera pose by matching the recorded image

frame with the dense reconstructed scene model. Bag-

nato et al (2011) jointly estimate a depth map and the

camera motion from two images of an omnidirectional

image sequence.

An attractive alternative employs direct feature-to-

depth mappings, learned offline from ground truth da-

tabases (Saxena et al 2008; Liu et al 2010). Besides

the tremendous effort necessary to compile a sufficiently

large set of – in particular, far field – ground truth data,

we don’t currently know how such an approach gener-

alizes to arbitrary scenes, and if it can compete with

reconstructions that rely on measurements efficiently

estimated online, as in our case. Hadsell et al (2009)

propose to train online based on stereo depth estima-

tions with the aim to improve the depth estimation in

future frames. More complex line segment features are

sufficient to derive indoor scene geometry from a single

frame as show by Lee et al (2009).

Mester (2011) postulated a number of requirements

for monocular reconstruction approaches, including an-

notation of motion measurements by covariance ma-

trices gained by analyzing the structure tensor, using

dense image registration instead of feature matching

and carefully exploiting temporal consistency, which in-

cludes incorporating reliability measures.

The previous work in Becker et al (2011) fulfills

the aforementioned demands. Here we further refine

the mathematical foundation and improve the infer-

ence step considerably by introducing a fully joint and

second-order update scheme which now guarantees a de-

crease of the objective function. Depth map and camera

motion are now both completely annotated with confi-

dence information.

We complement the theoretical part by discussing

the achievable depth map accuracy and pointing out

the relation to variational optical flow approaches and

to epipolar geometry. The experimental verification is

based on a considerably larger variety of image data.

Comparison to results from stereo, bundle adjustment

and synthetic ground truth were extended and refined.

1.4 Contribution and Organization

We present an approach that estimates from a monocu-

lar high-speed image sequence of arbitrary static scenes

both camera motion and dense scene structure (depth

maps), using noisy sparse displacements computed from

two consecutive frames at each instant of time. The ap-

proach combines, by joint optimization, geometric inte-

gration over the Euclidean manifold SE3 for incremen-

tal motion parameter estimation, with large-scale vari-

ational depth map estimation, subject to spatial and

short-time temporal regularization. The novelty of our

approach is due to the ability to recover dense scene

structure and egomotion from monocular sparse dis-

placement estimates within a truly recursive online es-

timation framework.
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Section 2 provides an overview of the overall ap-

proach and specifies underlying assumptions and ap-

proximations, followed by detailing each component of

our method in Sect. 3. Section 4 covers the numerical

details of the inference step.

We report in Sect. 5 results of an evaluation of our

approach using more than 2700 real images provided

by a novel publicly available database, that aims at

providing a benchmark for computer vision algorithms

in the context of automotive applications.

Moreover, we show that our approach compares fa-

vorably to results computed with less restricted ap-

proaches. Using public implementations of stereo depth

estimation (Rhemann et al 2011; Szeliski et al 2008;

Geiger et al 2010) and the Voodoo Camera Tracker1

(VCT) ensure reproducibility of all results.

The experiments with real image sequences are com-

plemented by results for a synthetic image sequences

which features reliable ground truth.

1.5 Notation

We provide an overview of notations used in this work.
R, R+ set of real numbers, non-negative

real numbers

M =Md×MC ,

G = Gd ×GC

manifold M, Lie group G jointly

representing depth map and cam-

era motion

SEn, sen n-dimensional special Euclidean

group, associated Lie algebra

SOn, son n-dimensional orthogonal group,

associated Lie algebra

L basis vector of a Lie algebra
TXG tangential space of Lie group G

at X ∈ G

〈·, ·〉 inner product

‖ · ‖ Euclidean norm

Id identity operator

∇, ∇, H gradient, affine connection, Hes-

sian

exp, log scalar-valued exponential and

logarithm

Exp, Log matrix-valued exponential and

logarithm

Gρ(x) Gaussian filter mask with vari-

ance ρ

p(x), p(x|y) probability, conditional probabil-

ity

N (x;µ,Σ),

NM(x;µ,Σ)

normal distribution on the real

vector space, on the manifold M
1 http://www.digilab.uni-hannover.de/docs/manual.html,

v1.2.0b

�, � matrix relation for positive

(semi-)definiteness

[·]i i-th component of a compound

vector expression

[x]× 3 × 3-matrix representing the

cross product with x ∈ R3

Xk state in iteration k of the recur-

sive update loop

X(i) state in iteration i of the infer-

ence step optimization

2 Problem Statement, Approach (Overview)

2.1 Preliminaries

We adopt the common concepts of multiple view ge-

ometry (Hartley and Zisserman 2000). We assume the

internal camera parameters to be known (offline cal-

ibration) and denote incremental external parameters

corresponding to frame k by Ck = (Rk, hk), moving the

camera from its position at time k − 1, see Fig. 2.

The manifoldMC := SE3 of Euclidean transforma-

tions C = (R, h) ∈ MC , parametrized by rotations R

and translations h, is identified with the matrix Lie

group

GC :=

{
Q =

(
R h

0> 1

)
: R ∈ SO3, h ∈ R3

}
, (1)

where SO3 denotes the group of proper rotations.

For any x ∈ R3 the 3× 3-matrix

[x]× :=
( 0 −x3 x2

x3 0 −x1
−x2 x1 0

)
, (2)

represents the cross product linear operator such that

[x]× y = x× y for all y ∈ R3.

2.2 Problem Statement

Let Ω ⊂ R2 be the image domain and I0:k := {I0, I1,
. . . , Ik} a given image sequence of frames I l : Ω → R,

measured at times l ∈ {0, . . . , k} with cameras C0:k.

From the induced projected motion uk (optical flow)

we wish to jointly estimate in a recursive manner both

C1:k and a sequence d1:k of depth maps dl : Ω → R+

that assign to each image point x ∈ Ω its depth dl(x)

along the viewing ray, up to a common global unknown

scale factor – see Fig. 2.

The difficulty of this problem is (i) due to a mon-

ocular driver assistance scenario (see Fig. 1) inducing

less favorable motion parallax, (ii) a fast moving cam-

era leading to displacements of consecutive frames up

to 35 pixels (px) (with frame size 656 px × 541 px), and
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x′ = x− uk(x)

x

camera k

camera k − 1

Ck = (Rk, hk)

dk(x)

(
x
1

)

Fig. 2 A scene point is defined by image coordinates x and
depth dk(x) in the coordinate system of camera k. Its projec-
tion moves by −uk(x) to x′ when the camera is rotated and
translated backward by Ck = (Rk, hk).

(iii) a recursive online processing mode that updates

the camera parameters and depth map based on two

consecutive frames only.

2.3 Design Decisions: Overview

Major design decisions are discussed only in this sec-

tion while further details are addressed in the following

sections.

The considered scenario consists in solving the chal-

lenging inverse problem to determine the parameters

(depth, camera motion) which explain the observed op-
tical flow. Subsequent image frames contain much in-

ferior depth information than a stereo image pair as

we will discuss in Sect. 3.1.2. Thus, it is essential to

handle weak information correctly instead of discard-

ing it, which further motivates the probabilistic formu-

lation utilized in Sect. 3. All results are annotated with

an accuracy estimate to appropriately consider them in

future frames and higher-level reasoning steps.

The decision for a recursive formulation is a conse-

quence of the requirement for both robustness and real-

time capability of the approach. In contrast to batch

methods, only the minimum number (i.e. two) of im-

age frames for structure-from motion need to be stored

and considered in computation. Nevertheless, the tem-

poral smoothness component accumulates information

from all previous frames in order to handle the reduced

information due to the unfavorable camera setup.

Due to the high dimensionality of the variables we

employ Gaussian approximations instead of less com-

pact descriptions such as particle filters. On the other

hand, accurate representation of the projective model

and the manifold structure of the variables is required

and rules out linear approximations and thus a classical

Kalman filter design.

Instead of reconstructing w.r.t. a particular fixed

camera view for a number of frames as e.g. in Graber

et al (2011); Newcombe and Davison (2010); Stühmer

et al (2010); Newcombe et al (2011), we always define

the latest camera position as reference frame. This is

the most relevant of all observed frames for comparing

to future frames and the most natural choice for the

automotive context.

Dense formulation allows to incorporate motion in-

formation for all pixels in the images to improve robust-

ness and accuracy of both scene structure and camera

pose, also confirmed by recent work (Valgaerts et al

2012; Newcombe et al 2011; Comport et al 2007). The

regular grid structure is well suited for parallel process-

ing e.g. on (embedded) GPU hardware.

For robustness, observations need to be explained

accurately and deviations from the model need to be

balanced between the error sources. As it is not clear

how decoupled methods can accomplish this, joint esti-

mation of depth and egomotion is the consequent choice

followed here.

Dependency of the results on the accuracy of ex-

ternal sensors such as acceleration sensors is avoided

by explicitly not assuming their presence. However, the

probabilistic formulation readily allows to incorporate

also additional noisy measurements, e.g. to determine

the unknown global scale, see Sect. 3.1.3.

The numerical scheme for the inference step is based

on established mathematical tools which provide guar-

antees on correctness and convergence. Details are dis-

cussed in Sect. 4.

2.4 Approach: Overview

The natural approach to the considered problem is to

consider sequences of state variables X0:k = (d0:k, C0:k)

and observations Y 1:k = u1:k, together with probabilis-

tic models of state transitions p(Xk|Xk−1) and the ob-

servation process p(Y k|Xk) under Markovian assump-

tions, in order to recursively estimate Xk based on

the posterior marginal distribution p(Xk|Y 1:k) (cf., e.g.

Bain and Crisan (2009)).

Approximations to this general approach are inevi-

table, however, due to the non-linearity of the underly-

ing processes, due to the high dimensionality of depth

maps dk and displacement fields uk (cf. Fig. 2), and

due to a strict requirement for computational efficiency

imposed by the scenario shown by Fig. 1. We adopt
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therefore the variational modeling perspective as ac-

cepted alternative in situations where sampling based

approaches are too time consuming (cf., e.g. Jordan

et al (1999)).

Accordingly, as detailed in Sect. 3, we devise Gaus-

sian approximations p(Y k|Xk) = N (uk;µku, Σ
k
u) and

N (dk; µ̂kd, Σ̂
k
d ) for the high-dimensional observed mo-

tion Y k = uk and states dk, respectively, that suffi-

ciently take into account uncertainties due to the aper-

ture problem and the viewing geometry (regions around

the epipole). Evaluating the former Gaussian entails

routine parallel coarse-to-fine signal processing, whereas

the latter additionally takes into account spatial and

temporal context (regularization) in terms of predic-

tions µ̂kd, Σ̂k
d .

The prior N (dk; µ̂kd, Σ̂
k
d ) is complemented by a lo-

cal Gaussian model NMC (Ck;Ck−1, Σ̂k
C) of the mo-

tion parameters on the tangent space of the Euclidean

manifold MC = SE3 at Ck−1 (cf. Pennec (2006)), to

form an approximation of the state transition process

p(Xk|Xk−1) from frame k− 1 to frame k, where Xk =

(dk, Ck) = (dk, Rk, hk).

Putting all components together, we define and com-

pute our update as mode of the posterior marginal ap-

proximation

p(Xk|Y 1:k) ∝ p(Y k|Xk)p(Xk|Xk−1).

Concerning the motion parameters Ck, we prefer

working directly on MC using established concepts of

numerics (Absil et al 2008), rather than to represent the

two-view geometry by the essential matrix and to re-

cover C by additional factorization (Helmke et al 2007).

3 Approach: Details

Our approach jointly estimates egomotion C and a dense

depth map d from a monocular image sequence. The

recursive formulation requires constant amount of stor-

age and aims at real-time applications. Large displace-

ments inevitable in the considered scenario are handled

in the common coarse-to-fine manner (Fleet and Weiss

2006). Uncertainty of observations and depth estimates

are handled by probabilistic models.

3.1 Observation Process

We detail the observation process p(Y k|Xk), with ob-

served feature motion Y k, state variablesXk = (dk, Ck)

(camera motion, depth map) and the camera Ck given

by Ck−1 in the previous frame and the egomotion pa-

rameters (Rk, hk). To simplify notation, we refer to

frame k−1 with primes (e.g. C ′) and temporarily drop

indices k and k − 1.

Using the known internal camera parameter ma-

trix K ∈ R3×3, we undo the corresponding affine trans-

formation of the image plane (cf. Hartley and Zisser-

man (2000)) and denote the normalized image coordi-

nates by x ∈ Ω ⊂ R2. Note that all related quantities

like displacements, means and covariance matrices have

to be transformed as well. To keep the notation simple,

however, we only refer to normalized quantities in what

follows.

Any scene point d(x) ( x1 ) at depth d along the view-

ing ray ( x1 ) projects to the image point with inhomoge-

neous coordinates x. We denote this projection of scene

points (X1, X2, X3)> in coordinate system of camera C

by PC ,

PC(X1, X2, X3) :=
1

X3

(
X1

X2

)
. (3)

Consider any two subsequent points in time and the

camera motion C ′ → C given by the parameters (R, h).

The motion induces an apparent motion (R>,−R>h)

of scene points

d′(x′)

(
x′

1

)
→ d(x)

(
x

1

)
= R>

(
d′(x′)

(
x′

1

)
− h
)
. (4)

Now we define the displacement u(x) in the image plane

(see Fig. 2) by

x′ = x− u(x). (5)

Using eqns. (3) and (4) we obtain

u(x;R, h, d) = x− PC
(
d(x)R

(
x

1

)
+ h

)
(6)

which represents the model for optical flow between two

consecutive frames.

Observations Y correspond to estimates û(x) of the

displacements (6) for all x ∈ Ω, accompanied by an

(possibly anisotropic) accuracy estimate represented by

a positive definite 2 × 2-matrix Σu(x). Although any

method which provides (û(x), Σu(x)) is conceivable, we

here resort to the well studied method by Lucas and

Kanade (see Baker and Matthews (2004)),

û(x) := −Σu(x)
(

Gρ(x) ∗
((
∂tI(x)

)(
∇I(x)

)))
, (7a)

Σu(x) :=
(

Gρ(x) ∗
((
∇I(x)

)(
∇I(x)

)>))−1
. (7b)

Here, Gρ(x)∗ denotes element-wise Gaussian convolu-

tion of the subsequent matrix comprising partial deriva-

tives ∂tI, ∇I :=
(
∂x1I

∂x2I

)
of the image sequence function

I(x, t). They are estimated by 3 × 3 binomial filters
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Fig. 3 Detailed view of an image frame and an ellipse rep-
resentation of the estimated flow uncertainty Σku(x). Highly
textured regions (upper right) can be correctly distinguished
from locations with low confidence due to low signal-to-noise
ratio (left) and image edges (aperture problem; middle).

and first-order differences derived by linearizations at

time k. Likewise, we choose a rather small smoothing

kernel of size ρ = 2 px, leading to a fast processing

stage. We point out that stronger local regularization

(smoothing) is not necessary as the embedding multi-

scale framework and the state prediction (see Sect. 3.2)

ensure small incremental displacements u(x).

As for the unknown observation process p(Y k|Xk),

our ansatz is

p(Y k|Xk) = N (ûk;µku, Σ
k
u), (8)

where µku is composed position-wise of u(x;R, h, d), i.e.

µku(x) := u(x;Rk, hk, dk(x)) (9)

due to eqn. (6), and Σk
u is a block-diagonal covariance

matrix with component matrices (7b). Note that the

definition of µku makes explicit the conditioning on the

state parameters Xk = (dk, Ck) = (dk, Rk, hk).

Model (8) only approximates the true unknown ob-

servation process (7a). Uncertainty of observations uk

is modeled by Σk
u and internally represented by the

precision matrices (Σk
u)−1 (cf. eqn. (7b)). Hence, mo-

tion estimation is acquired at every image position,

but weighted according to its information content (see

Fig. 3): homogeneous image regions are represented as

rank-0 matrices. The reduced velocity information pro-

vided at image edges (aperture problem) is marked by

rank-1-matrices and thus can be correctly accounted for

within the overall recursive estimation framework – see

Sect. 3.3.

3.1.1 Connection to Epipolar Geometry

The motion model (6) can be reformulated to emphasis

the influence of the depth:

u(x;R, h, d) =(1− γ(d))u0(x,R, h) (10a)

+ γ(d)u∞(x,R, h) (10b)

with asymptotic optical flow

u0(x,R, h) := lim
d→0

u(x;R, h, d) = x− PC(h) ,

u∞(x,R, h) := lim
d→∞

u(x;R, h, d) = x− PC(R ( x1 )),

and weight

γ(d) :=
[dR ( x1 )]3

[dR ( x1 ) + h]3
.

Under the mild assumption that the camera moves for-

ward (h3 > 0) and rotation is moderate ([R ( x1 )]3 ≥ 0)

between two successive frames, we have γ(d) ∈ [0, 1]

for d ∈ R+ and u is a convex combination of the extreme

values u0 and u∞. In particular, the dependency of u

on d vanishes in the epipole point x = e := PC(R>h),

i.e.

u(e;R, h, d) = u0(e,R, h) = u∞(e,R, h) = e− PC(h) .

As a consequence, at this point no depth information

can be derived from the observed motion, while the flow

itself is not necessarily zero.

Furthermore, any point pair (x, x′) = (x, x−u(x)) as

defined by (5) is connected via the essential matrix E :=

[h]×R through the constraint (Hartley and Zisserman

2000)

0 =

(
x′

1

)>
E

(
x

1

)
, (11)

see Appendix A.1 for a detailed verification.

Thus, eqn. (11) implicitly defines the epipolar line in

camera C ′ corresponding to x for fixed camera param-

eters R and h. Consequently, an one-dimensional cor-
respondence search between the previous and current

image frame along d implicitly respects the epipolar

constraint. Furthermore, from the representation (10)

it becomes clear, that only the segment of the epipolar

lines is considered which is geometrically reasonable.

The connection to the fundamental matrix F is pro-

vided by the camera calibration matrix K and F =

K−>EK−1.

3.1.2 Depth Reconstruction Accuracy

In order to motivate the upcoming formulation and

to ease the interpretation of experimental results we

provide a theoretical analysis of the accuracy of the

depth measurement. For completeness we also compare

to stereo setups which will provide reference depth maps

in the experimental section.

Let us fix the camera movement (R, h) and some

depth d(x). Furthermore, we assume that the optical

flow can be measured at pixel x with the correct mean
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û(d) = u(x;R, h, d) and a unit isotropic accuracy Σu =

σ2
uI, both expressed in normalized coordinates. Then

we employ a Gaussian approximation of the distribu-

tion p(d̂|û(d)) of the reconstructed depth d̂ and for d̂ ≈ d
we have

p(d̂|û(d)) ∼ p(û(d)|d̂) ≈ N (d̂; d, σ2
d̂
) . (12)

A suitable choice (Tierney and Kadane 1986) for σd̂ is

σ−2
d̂

=
∂2

∂d̂2
(− log p(d̂|û(d)))

∣∣∣∣
d̂=d

. (13)

Then we define the (approximate) standard deviation

of the depth measure relative to σu as

σg(d, x) :=
σd̂
σu

=
[R ( x1 ) d+ h]

2
3∥∥HR ( x−e0 )∥∥ (14)

with H :=
(−h3 0 h1

0 −h3 h2

)
and epipole e. This quantity

models the dependence of the expected depth measure-

ment error on geometric factors.

We exemplarily compare two simple scenarios: a

simple forward movement (Rm = I, hm = b(0, 0, 1)>,

b ∈ R) typical for the considered monocular setup and a

sidewise translation (Rs = I, hs = b(1, 0, 0)>), which is

essentially a rectified stereo setup with baseline b ∈ R.

The measures simplify to:

monocular:σg,m =
(d+ b)2

b

1

‖x‖ (15)

stereo:σg,s =
d2

b
. (16)

For both cases the expected error increases quadrati-

cally in depth d (assuming b� d), but more determin-

ing is the spatial dependency of the monocular setup.

As a consequence, the potential accuracy is limited in

regions near the image center while the accuracy of a

stereo method is independent of the image position.

This generalizes to general rotation and translation pa-

rameters (see (14)) where the distance to the epipole

has considerable impact on the accuracy.

Figure 4(a) shows the characteristic shape of σg(x)

for the monocular scenario. It becomes clear that ex-

tracting depth information near the epipole requires an

accurate model which motivates the elaborate formula-

tion and numerics in Sect. 3 and Sect. 4, respectively.

In comparison, a stereo image pair (Fig. 4(b)) provides

much more information at any image position.

3.1.3 Global Scale Estimation

Due to the probabilistic formulation, further informa-

tion can easily be incorporated to fix the unknown global

scale of the scene and camera translation.

1
0
0

0

(a) monocular uncertainty

1
0
0

0

(b) stereo uncertainty

Fig. 4 Expected depth measurement error σg(x, d) for
(a) forward motion typical for a monocular setup (see (15))
and (b) a stereo setup (see (16)). For both cases we set b =
0.3, d = 1 and use the same color encoding (clipping at
100). The stereo setup has a spatially constant uncertainty
(σg = 10

3
). In contrast, for the considered monocular setup σg

is generally larger and decreases considerably near the epipole
(image center). This emphasizes the requirement for an accu-
rate model and numerics as propagated here.

For example odometry sensor data can be included

as an additional observation term in the form of a Gaus-

sian probability distribution of Ck. This formulation

allows to describe uncertain and (partly) missing infor-

mation, e.g. the vertical motion component. For more

details we refer to Sect. 3.2.1, where the same technique

is used to incorporate the prediction prior on Ck.

In the same manner, range sensors or detected ob-

jects of known size introduce observation terms incor-

porating the depth map variables.

Note, that in this work we do not assume the pres-

ence of additional sensor data and thus we will not fur-

ther investigate this issue.

3.2 State Transition and Prediction

Next we detail the state transition model p(Xk|Xk−1)

for the state variables X = (d,C). The previous state

Xk−1 = (dk−1, Ck−1) is equipped with a variance es-

timation σk−1d and Σk−1
C which will be addressed in

Sect. 3.4.

3.2.1 Camera

We take Ck−1 =: Ĉk both as prediction Ĉk of Ck and

as mean of Ck, which is justified by the fast frame rate.

The variance Σ̂k
C of the camera parameters prediction

is propagated by defining Σ̂k
C := Σk−1

C + ΣC . The pa-

rameters σ2
R and σ2

h on the main diagonal of diago-

nal matrix ΣC account for the uncertainty of the rota-

tional and translational prediction, respectively. Then

the probabilistic model for Ck reads as

Ck ∼ p(Ck|Ck−1) = NMC (Ck;Ck−1, Σ̂k
C). (17)
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Here, NMC (x; y,Σ) is the normal distribution on the

manifold MC = SE3 and is defined in Pennec (2006,

Theorem 3) as

NMC (x; y,Σ) ∝ exp

(
−1

2
dist2MC (x, y;Σ)

)
, (18)

dist2MC (x, y;Σ) :=(Logyx)>Γ (Σ)(Logyx), (19)

with concentration matrix Γ (Σ), Logyx := Log(y−1x)

and Log(x) as defined in Appendix B.1.1.

The relation of Γ (Σ) to Σ is given by a non-closed

form and thus we use the approximation proposed in

Pennec (2006, Theorem 5):

Γ (Σ) ≈
(
Σ−1 − 1

3
Ric

)
≥ε

(20)

where Ric is the Ricci curvature matrix. Furthermore,

(X)≥ε ensures positive definiteness of X by replacing

the eigenvalues λ1(X), . . . , λ6(X) with max{ε, λ1(X)},
. . . , max{ε, λ6(X)} and some small ε > 0.

3.2.2 Depth Map

The predicted depth map d̂k is computed by transport-

ing dk−1 by the motion parameters Ĉk = (R̂k, ĥk) =

(Rk−1, hk−1). To obtain predicted depth values d̂k(x)

at grid positions x in frame k, we approximately infer

corresponding positions x′ in frame k−1 using eqns. (5)

and (6),

x′ ≈x− u(x;Rk−1, hk−1, dk−1(x)) (21)

=PC

(
dk−1(x)Rk−1

(
x

1

)
+ hk−1

)
. (22)

We bi-linearly interpolate dk−1 at x′ to obtain d′(x′)
and the according space point d′(x′)

(
x′

1

)
in camera C ′.

Its transition to camera C is given by (4), and we define

the depth d(x) as prediction d̂k(x), i.e.

d̂k(x) = d̂k(x;Xk−1) = d̂k(x; dk−1, Rk−1, hk−1). (23)

Figure 5 illustrates this process. Note that eqn. (21)

only is an approximation because we do not know the

correct argument dk(x) as required by eqn. (6), and

that (23) is a function of Xk−1 = (dk−1, Ck−1).

We assume that a local variance map σk−1d of dk−1 in

the previous frame is known. In Sect. 3.3 we will detail

on how this information is obtained. Prediction errors

of the depth map are accounted for by assuming a con-

stant increase σd of the local variance, which is trans-

ported identically to dk−1, i.e. (σ̂kd(x))2 = (σk−1d (x′))2+

σ2
d. Experiments confirm this assumption, see Fig. 11.

Based on this relationship, we make a Gaussian ansatz

as approximate probabilistic model of dk,

p(dk|Xk−1) ∝ exp
(
− fd(dk; d̂k, σ̂kd)

)
. (24)

x′
x

predicted

camera k − 1

Ĉk = (R̂k, ĥk)

d̂k(x)

(
x
1

)
= R̂>

(
d′(x′)

(
x′

1

)
− ĥ

)

Step 1

Step 2

Step 3

camera k

Fig. 5 Prediction d̂k of the state variable d: We assume the
predicted camera motion (R̂, ĥ) := (Rk−1, hk−1). Step 1:
Map x ∈ Ω in (predicted) camera k to x′ in cam-
era k − 1 using (21). Step 2: Transfer corresponding space
point (x′, 1)>d′(x′) from coordinate system of camera k − 1
to (predicted) camera k. Step 3: Use depth of this space point

as predicted depth d̂k(x).

The energy functional fd includes a prior penalizing the

deviation from the prediction d̂k and a spatial smooth-

ness prior with variance parameter σs ∈ R

fd(d
k; d̂k, σ̂kd) := (25a)

1

2

∫
Ω

(
dk(x)− d̂k(x)

σ̂kd(x)

)2

+
1

σ2
s

‖∇dk(x)‖2dx. (25b)

Here, we used continuous notation to facilitate interpre-

tation of the terms. The decision in favor for a quadratic

spatial smoothness term and alternatives are discussed

by the end of this section.

After discretization, dk, d̂k, σ̂kd ∈ Rn are vectors in-

dexed by n grid positions x ∈ Ω, and we re-use the

symbol ∇ to denote the matrix ∇ : Rn → R2n approx-

imating the gradient mapping. Furthermore, we define

the predicted positive semi-definite covariance matrix

of d̂k as Ŝkd := diag(σ̂kd(x))2. Inserting the discretized

functional fd (25) into (24) and ignoring normalizing

constants, we obtain after multiplying out and rear-

ranging the terms using some basic matrix algebra (see,

e.g. Rasmussen and Williams (2006, App. A.2)),

p(dk|Xk−1) ∝ N (dk; µ̂kd, Σ̂
k
d ), with (26a)

µ̂kd = Σ̂k
d

(
Ŝkd
)−1

d̂k, (26b)

Σ̂k
d =

((
Ŝkd
)−1

+ σ−2s ∇>∇
)−1

. (26c)

Due to the specific form, Σ̂k
d is positive semi-definite.

Notice that the prior (24) and the translational part

of (17) fix a single, but arbitrary global scale of d and h

that cannot be inferred from monocular sequences.
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Alternative Spatial Regularization. Depth map regular-

ization implicitly enforces a specific prior on the scene

structure. First order total-variation (TV) regulariza-

tion (Rudin et al 1992) is known to result in visually

more crisp results than quadratic regularization. How-

ever, TV enforces piece-wise constant depth which does

not fit well the given application: Even the correct re-

construction of a slanted plane (flat road, house wall)

requires a regularization term which is aware of the

projective nature of the variables. Second order TV

(Lenzen et al 2013; Bredies et al 2010) might be an

interesting approximation to be investigated in further

work. However, here we resort to quadratic regulariza-

tion (see (25)) as it provides an immediate probabilis-

tic interpretation while reasonably allowing for slanted

structures.

3.3 State Update

Having observed Y k = ûk in terms of the displacement

vector field (8) that depends on the unknown state vari-

ables Xk = (dk, Ck) = (dk, Rk, hk), we update the state

by estimating Xk = (dk, Ck) as mode of the distribu-

tion

p(Xk|Y 1:k) ∝ p(Y k|Xk)p(Xk|Xk−1)

= N (ûk;µku, Σ
k
u) NMC (Ck;Ck−1, Σ̂k

C) N (dk; µ̂kd, Σ̂
k
d )

based on eqns. (8), (17) and (26). We define the objec-

tive function f(d,C) as

f(d,C) :=− log p(Xk|Y 1:k) (28a)

=fu(d,C) + fC(C) + fd(d), (28b)

which is composed of

fu(dk, Ck) =
1

2
(ûk − µku)>

(
Σk
u

)−1
(ûk − µku), (29a)

fC(Ck) =
1

2
dist2MC (Ck, Ck−1; Σ̂k

C), (29b)

fd(d
k) =

1

2
(dk − µ̂kd)>

(
Σ̂k
d

)−1
(dk − µ̂kd). (29c)

Note that µku(x) = u(x;Rk, hk, dk(x)) depends non-

linearly on Rk, hk and dk.

Our approach to solving

(dk, Ck) := arg min
d,C

f(d,C), C ∈ SE3, d ∈ Rn+ (30)

consists in joint second order update steps for C and d

on a manifold, embedded into a multiscale framework.

In Sect. 4 we give a detailed description of the opti-

mization and numerics.

m
a
x

0

Fig. 6 Estimated depth variance σkd for the frame depicted
in Fig. 1. Two sources of high uncertainty (σkd(x) large) can
be identified: Near the epipole (image center), no information
can be derived from the observed motion, see Sect. 3.1.1. In
the texture-less region of the sky (above epipole), it is not
possible to measure the optical flow, see Fig. 3.

3.4 Estimation of Variable Variance

It is essential to propagate variance information along

with the results (dk, Ck) to ensure that only the accu-

rate information components are incorporated as prior

(cf. Sect. 3.2) in the estimation of (dk+1, Ck+1).

3.4.1 Local Depth Variance

Similar to σg in Sect. 3.1.2 we approximate the local

variance (σkd)2 of the depth map by the second deriva-

tives of f in (dk, Ck) and restricted to non-negative

values,

(σkd(x))−2 := max

{
0,

∂2

∂d(x)2
fu(dk, Ck)

}
(31a)

+
∂2

∂d(x)2
fd(d

k, Ck) . (31b)

This quantity allows to identify regions with high uncer-

tainty caused by the parallax and/or the lack of image

features, see Fig. 6 for an example.

3.4.2 Camera Motion Variance

The joint co-variance matrix of the camera motion pa-

rameter is approximated by the second derivatives of f

in Q,

(Σk
C)−1 =(∇QQf(Ck, dk))+ , (32)

where (·)+ takes the non-negative part of the eigen-

values, which can be accomplished using a Cholesky-

decomposition with low computational effort due to the

small dimension of Q. Figure 7 visualizes an exemplary

camera distribution.
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x3

x
1

0 0.5 1 1.5 2

−0.5

0

0.5

Fig. 7 2d-projection (top view) of estimated variance of cam-
era pose (green): contour lines and mode (arrow) of probabil-
ity density function of the estimated camera translation hk

(red). Probability density function of rotation Rk as polar
plot (blue) with radius offset for better visibility (dotted).
Translation accuracy is lower along (≈ x3) than perpendicu-
lar to (≈ x1) the camera principal axis.

3.5 Interpretation as Variational Optical Flow

Estimation

The proposed ansatz can be interpreted as a variational

optical flow estimation method. To this end we consider

the minimization of the objective function (28) w.r.t. d

and C. The prediction prior terms introduce ordinary

biases on the variable to impose temporal smoothness.

For clarity, in the following considerations we omit the

camera and depth prediction term by setting fC(d,C) =

0 and (Ŝkd )−1 = 0 in (25). Then (28) simplifies to

f(d,C) = fu(d,C) + fd(d)

=
1

2
(û− µu)>Σ−1u (û− µu) +

1

2σ2
s

d>
(
∇>∇)d

=
1

2

n∑
i=1

(û(xi)− µu(xi))
>Σ−1u (xi)(û(xi)− µu(xi))︸ ︷︷ ︸
addend i

+
1

2σ2
s

n∑
i=1

‖∇d(xi)‖2.

Inserting the definition of û and Σu in (7), addend i of

the first term of f(d, c) can be rewritten as (omitting

the local dependency on xi)

(û− µu)>Σ−1u (û− µu) (33)

=

(
µu
1

)>(
Gρ ∗

(
∇I∇I> ∂tI∇I
∂tI(∇I)> (∂tI)2

))(
µu
1

)
(34)

which corresponds to the data term for flow µu intro-

duced in the combined local-global variational optical

flow approach in Bruhn et al (2005).

However, in this work the flow µu = µu(xi) is not

represented by a functionalΩ 7→ R2 but is parametrized

by the depth map d : Ω 7→ R+ and camera motion C

using the relation µu(xi) = u(xi;R, h, d(xi)) (see (9)).

Furthermore, the term fd imposes smoothness on the

scene representation d instead of the flow vector field µu.

Thus, the proposed approach implicitly and globally

estimates an optical flow field which is consistent with

the geometrical model (6) and includes a geometrically

motivated regularization term. Figure 1(a) visualizes

such a reconstructed flow field.

4 Optimization, Numerics

4.1 Overview

The inference step in Sect. 3.3 requires a joint opti-

mization (30) for depth map d and camera parameter C

which possesses several challenges that we address with

approved and theoretically founded methods.

The interaction of camera and scene variables is

non-linear and involved due to the projective model in

the observation term and leads to an objective func-

tion which is non-convex in general. The highly de-

tailed depth map and their spatial connection due to

the smoothness prior requires numerics capable of large-

scale problems while camera pose estimation has to re-

spect the manifold nature. However, the camera setup

requires joint estimation of d and C to accurately ex-

plain the observations and to evenly balance deviations

from the model between the error sources.

In this section we propose a Newton-like second-
order iterative method for efficiently coping with non-

linearity. The task of choosing a joint descent direc-

tion for (d,C) is reduced to a system of linear equations

which is a well understood problem also for a large num-

ber of variables. The Lie group formulation respects the

manifold nature. A decrease of the objective function is

guaranteed until convergence by adding carefully cho-

sen proximity terms.

Section 4.2 introduces and defines the mathemati-

cal concepts and their details required for a compact

description of the algorithm. Algorithm 1 summarizes

the essential steps for determining the minimizing se-

quence and also links to Sections 4.4–4.10 providing

motivation and details.

The embedding multiscale framework (Sect. 4.10)

enables the local optical flow estimator to handle the

large dynamics of the displacement magnitude caused

by the monocular camera setup and the high camera

speed.
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Algorithm 1 Overview over the second-order itera-

tive update of the variables X(i) which respects their

manifold structure and guarantees decrease of objec-

tive function f(X). Comments point to sections which

provide details and motivation.

initialize X(0), i = 0 . Sect. 4.10
repeat

i← i+ 1
determine gradient ∇T f of f at X(i−1) . Sect. 4.4
determine second order information A of f . Sect. 4.5
choose M , s.t. B(i) := (A+M)−1 � 0 . Sect. 4.6
compute search dir. W (i) = −B(i)∇T f . Sect. 4.7
determine step size t(i) (line search) . Sect. 4.8
update: X(i) ← φ(t(i), X(i−1),W (i)) . Sect. 4.3

until convergence . Sect. 4.9

4.2 Preliminaries

For a compact and clear representation, and in order to

focus on the actual method instead of implementation

details in the following sections, we here define and de-

tail the required concepts connected to Lie groups. In

particular we consider the variable domain Rn × SE3

as a single manifold. To this end we summarize the Lie

group interpretation of Rn in Sect. 4.2.2.

4.2.1 Special Euclidean Group SE3

The group neutral element IC of GC is the 4×4 identity

matrix. The Lie algebra gC := se3 of GC is given by

gC =
{
W =

(
[ω]× v

0> 0

)
: ω, v ∈ R3

}
, (35)

where so3 3 [ω]× denotes the Lie algebra of SO3 iden-

tified with the linear subspace of skew-symmetric ma-

trices and [ω]× as defined in (2).

The orthogonal basis {LC1 , . . . ,LC6 } spans gC . We

denote the tangent space of GC at Q ∈ GC by TQGC .

Any W ∈ TICGC is transported to TQGC by matrix-

multiplication QW , here denoted as application of the

linear operator LCQ : TICGC 7→ TQGC , i.e. LCQW =

QW . Its adjoint (LCQ)∗ is the matrix transpose, i.e.

(LCQ)∗W = Q>W .

We equip SE3 with the Riemannian metric

〈W 1,W 2〉GC := 〈[ω]
1
× , [ω]

2
×〉+ 〈v1, v2〉, (36)

for all W 1,W 2 ∈ gC , where 〈·, ·〉 on the right-hand side

denotes the canonical matrix and vector inner product,

respectively. Note that unlike for general Riemannian

metrics, the metric (36) does not depend on Q ∈ GC ,

hence is the same for all tangent spaces TQGC , justify-

ing the notation 〈·, ·〉GC .

The exponential mapping Exp: gC 7→ GC that dif-

feomorphically maps tangent vectors close to 0 onto the

manifold within a neighborhood of IC as well as its in-

verse, Log : GC 7→ gC can be computed in closed form,

see Appendix B.1.1.

The orthogonal projection onto the tangent space

TICGC can be computed in closed form: Using the rep-

resentation X =
(
X11 X12

X21 X22

)
∈ R4×4, X11 ∈ R3×3 it is

given by

ΠTICG(X) = arg min
W∈gC

〈W −X,W −X〉GC (37)

=

(
1
2 (X11 −X>11) X12

0> 0

)
. (38)

The Levi-Civita connection ∇ of an m-dimensional

Riemannian manifoldM is the unique torsion-free and

metric-preserving affine connection

∇ : C∞(M, TM)× C∞(M, TM) 7→ C∞(M, TM),

which is defined (Absil et al 2008) by

∇WV := lim
t→0

LX(0)L
−1
X(t)V (X(t))− V (X(0))

t
. (39)

with trajectory X(t) : R 7→ M and d
dtX(t) = W (X(t)).

With an orthogonal base {L1, . . . ,Lm} of the ac-

cording tangential space TM, the parametrizationW =∑m
k=1 wkLk and V =

∑m
k=1 vkLk and the Christoffel

symbols Γ kij ∈ R, a general representation is given by

∇WV =

m∑
k=1

〈W,∂vk〉+

m∑
i,j=1

wivjΓ
k
ij

Lk . (40)

Note that ∇ is linear in W .

The Christoffel symbols are defined uniquely by the

equations (for all 1 ≤ i, j, k ≤ m, with [V,W ] = VW −
WV )

∇LiLj −∇LjLi =[Li,Lj ] (41)

andLk〈Li,Lj〉 =〈∇LkLi,Lj〉+ 〈Li,∇LkLj〉 (42)

demanding symmetry and metric preservation, respec-

tively.

For gC , the Levi-Civita-connection∇C is non-trivial

and described by the Christoffel symbols and we list

them in Appendix B.1.2.

4.2.2 Real Vector Space Rn

The vector space Rn can be considered as a flat man-

ifold Md := Rn, e.g. by regarding Rn as the subgroup

of SEn representing the translational part. We iden-

tifyMd with the Lie group Gd = Rn and adopt the nat-

ural vector representation of elements in X ∈ Gd, X =

(x1, . . . , xn) with xi ∈ R. Then the group multiplica-

tion XY , inversion X−1 and neutral element Id are the
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element-wise addition (XY = (x1 + y1, . . . , xn + yn)),

element-wise additive inverse (X−1 = (−x1, . . . ,−xn))

and zero vector (Id = (0, . . . , 0)), respectively.

For any point X ∈ Gd, we denote the attached tan-

gential space by TXGd. The exponential map Exp :

TIdGd 7→ Gd connecting the associated Lie algebra gd

to the Lie group Gd, its inverse, Log : Gd 7→ TIdGd,

and the orthogonal projection ΠT
Id

Gd : Rn 7→ TIdGd

are the identity operator. Thus, TXGd = Rn with the

canonical orthogonal basis for Rn, {Ld1, . . . ,Ldn}. Also

the linear operator LdX transporting W ∈ TIdGd to

TXGd for any X ∈ Gd is the identity and thus is self-

adjoint, i.e. LdX = (LdX)∗ = Id. For any V,W ∈ TXGd,

the inner product is given by 〈V,W 〉Gd = V >W .

On Gd, the Christoffel-symbols vanish, such that

Levi-Civita-connection (40) simplifies to a directional

derivative:

∇dWV =

n∑
k=1

〈W,∂vk〉Ldk (43)

with W =
∑n
k=1 wkLdk and V =

∑n
k=1 vkLdk. In partic-

ular, we have

∇dW (∇f(X)) = (Hw f(X))w, (44)

where Hx is the Hessian matrix operator ( d2

dxidxj
)i,j .

4.3 Joint Optimization

We consider an optimization problem equivalent to (30)

over the manifold M := Md ×MC , identified by the

group

G := Gd ×GC = {(Xd, XC) |Xd ∈ Rn, XC ∈ SE3 } .
Both Gd and GC are Lie groups and thus G is a Lie

group with the associated Lie algebra denoted by g and

we can adopt the framework for optimization on smooth

manifolds for jointly optimizing over M. All required

concepts are defined by independently applying the cor-

responding definitions in Sect. 4.2.1 and Sect. 4.2.2 for

the camera pose XC and depth map Xd, respectively.

In particular, the inner product is given by

〈V,W 〉G = 〈Vd,Wd〉Gd + 〈VC ,WC〉GC (45)

for V,W ∈ g.

The non-negativity constraint of d is moved into the

objective function, i.e.

q(X) := f(Xd, XC) + δRn+(Xd) (46)

using the characteristic function

δRn+(Xd) :=

{
0 ifXd ∈ Rn+
∞ else

. (47)

It remains to determine a minimizing sequence X(i) ∈
G, i = 1, 2, . . . for the problem

min
X∈G

q(X) . (48)

Given X(i), we determine X(i+1) by

X(i+1) = ϕ(t(i), X(i),W (i)) (49)

with search direction W (i) ∈ TIG, step size t(i) ∈ R+

and

ϕ(t,X,W ) := LXExp (tW ) . (50)

4.4 Descent Step Direction

4.4.1 Manifold Gradient

For determining a search direction W (i), we consider

the unconstrained objective function f(X). Here, we

denote the (ordinary) gradient of f(X) in the ambient

space at X ∈ G by ∇f(X). The gradient ∇G on the

manifold G is defined by (cf. Absil et al (2008))

〈∇Gf(X), V 〉G = 〈∇f(X), V 〉 ∀V ∈ TXG (51)

which is equivalent to

〈∇Gf(X), LXV 〉G = 〈∇f(X), LXV 〉 ∀V ∈ TIG (52)

with LX as defined in Sect. 4.2, or equivalently

〈L∗X∇Gf(X), V 〉G = 〈L∗X∇f(X), V 〉 ∀V ∈ TIG . (53)

Then ∇Gf(X) can be retrieved by the orthogonal pro-

jection ΠTIG onto the tangent space,

∇Gf(X) = (L∗X)
−1
ΠTIG (L∗X∇f(X)) (54)

which can be computed explicitly for G (see Sects. 4.2.1,

4.2.2).

We introduce a function ∇T f : G 7→ TG which

describes ∇Gf(X) when moving from X(i) by Y ∈ G

to X(i)Y :

∇T f(Y ) :=LY L
∗
X(i)Y∇Gf(X(i)Y ) (55)

=LYΠTIG

(
L∗X(i)Y∇f(X(i)Y )

)
(56)

For the compactness of notation, we use

∇T f := ∇T f(I). (57)
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Fig. 8 Representative performance of the minimization ap-
proach in Sect. 4 in a real scenario. Comparison of the pro-
posed second order method (red thick line) to a first order
gradient descent (B(i) = Id, blue thin line) on the (a) coars-
est and (b) finest multiscale level. The second order method
effectively minimized the objective function after few itera-
tion steps, as opposed to gradient descent which converges
slowly.

4.4.2 General Descent Direction

Furthermore, we define a positive definite linear opera-

tor on the tangential space,

B : TIG 7→ TIG

〈V,BV 〉G > 0,∀V ∈ TIG, V 6= 0 . (58)

Then for any ∇T f 6= 0 and any positive definite linear

operator B(i),

W (i) := −B(i)∇T f ∈ TIG (59)

is a descent direction, i.e.

d

dt
f(ϕ(t,X(i),W (i)))

∣∣∣∣
t=0

< 0 , (60)

see Proposition 3 in Appendix B.2. Since f(X) is smooth
on G, there exists a t(i) > 0 such that f(X(i+1)) <

f(X(i)).

The choice of B(i) is crucial for performance. Due

to the high dimension of Xd, the spatial variable inter-

actions (see (26)) and the non-linear interactions be-

tween Xd and XC in fu (see (29a)), a gradient descent

method (i.e. B(i) = Id) on the manifold turned out

to be unsatisfactorily slow. In turn, a suitable choice

of B(i) can improve the performance of the minimiza-

tion procedure significantly. Figure 8 demonstrates this

improvement for a real scenario and our choice of B(i)

detailed next.

4.5 Second Order Information

For optimization on Rn, the second derivatives (Hes-

sian H) provide valuable information on the local shape

of the objective function which can easily utilized in

second-order approaches such as the Newton method.

On a smooth manifold, the situation is usually more

complex. Here, the role of the Hessian is taken on by

the Levi-Civita connection ∇, see Sect. 4.2.

For any direction W ∈ TIG, ∇W∇T f provides an

approximation of the change of ∇T f when moving from

X(i) to ϕ(1, X(i),W ). We employ this description for

finding an approximate critical point of f(X) near X(i)

which amounts to solving

∇T f +∇W∇T f = 0 (61)

for W ∈ TIG.

The Levi-Civita connection ∇W is linear in W and

thus we can define a linear operator A : TIG 7→ TIG,

such that

AW = ∇W∇T f. (62)

Defining b := ∇T f , (61) can be written as

AW = −b . (63)

Furthermore, if the inverse A−1 of A exists and is posi-

tive definite, then a step direction can be computed as

W = −A−1b = −A−1(∇T f) and is guaranteed to be

a descent direction due to the results in Sect. 4.4 and

Proposition 3 in Appendix B.2.

However, due to the non-convexity of the objective

function f , A is not positive definite in general. Thus,

in the following, we propose an additive modification

of A,

A := A+M, (64)

such that

B(i) := (A)−1 (65)

is positive definite and thus guarantees (59) to be a

descent direction.

4.6 Choice of M

In this section we examine the structure of the objec-

tive function f in X(i) with the aim to determine a suit-

able modifying matrix M . Our choice is summarized in

Propositions 1 and 2.

4.6.1 Function Approximation Interpretation

The linear equality system (63) can be interpreted as

the optimality condition of a quadratic form

h(W ) := f(X(i)) + 〈b,W 〉G +
1

2
〈W,AW 〉G (66)
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and h(tW ) is a local quadratic Taylor approximation of

the objective function at X(i),

h(tW ) ≈ f(ϕ(t,X(i),W )) , (67)

see Appendix B.3 for a verification. Modification (64)

by M relates to adding a quadratic term to h(W ) and

we can define

h(W ) :=h(W ) +
1

2
〈W,MW 〉G (68)

=f(X(i)) + 〈b,W 〉G +
1

2
〈W,AW 〉G . (69)

Furthermore, positive definiteness of A is equivalent to

strict convexity of h(W ) in W .

4.6.2 Linear Representation

For our further analysis we bring (63) into a matrix-

vector representation using the orthogonal base {Ld1,
. . . , Ldn, LC1 , . . ., LC6 } for g (defined in Sect. 4.2). Then

we can represent W uniquely by w = (wd, wC) ∈ Rn+6

through

W (w) =(Wd(wd),WC(wC)) (70)

=

(
n∑
k=1

wd,kLdk,
6∑
k=1

wC,kLCk

)
. (71)

We re-use the symbols A, A, M and b for their corre-

sponding matrix and vector representation A,A,M ∈
R(n+6)×(n+6) and b ∈ Rn+6, respectively. Then we can

rewrite (63) as a linear equality system in matrix rep-

resentation,

Aw = −b . (72)

The involved matrices decompose according to the com-

position of the variables w = (wd, wC) into

A =

(
Add A>Cd
ACd ACC

)
and b =

(
bd
bC

)
. (73)

We choose a block-diagonal modification matrix M ,

M :=

(
Mdd 0

0 MCC

)
(74)

and obtain

A =A+

(
Mdd 0

0 MCC

)
=

(
Add A>Cd
ACd ACC

)
. (75)

In Sect. 4.6.3 we state general requirements for a

suitable A and motivate our choice of Mdd and MCC in

Sects. 4.6.4 and 4.6.5, respectively.

4.6.3 Conditions for B(i) � 0

In the following we denote the symmetric part of a ma-

trix M by M sym := 1
2 (M + M>). For showing the

positive definiteness of B(i) = A
−1

it is sufficient to

proof A � 0 and due to x>Ax = x>A
>
x = x>A

sym
x

we only need to consider the symmetric part of A,

A
sym

=

(
Add A>Cd
ACd A

sym

CC

)
. (76)

Identity A
sym

dd = Add follows from (44). The special

structure of MC renders ACC non-symmetric in gen-

eral.

Assuming Add is non-singular, the Schur comple-

ment (see Appendix B.4) of matrix A
sym

w.r.t. A
sym

dd ,

S
sym

:= A
sym

CC −ACdA
−1
dd A

>
Cd (77)

provides a condition on the positive definiteness of A

which makes use of the block decomposition (76):

A � 0 ⇔ Add � 0 and S
sym � 0. (78)

4.6.4 Choice of Mdd

To motivate our choice of Mdd, we consider the restric-

tion of h(W ) to W = (Wd, 0) = (wd, 0):

h(wd) := h((wd, 0)) = h((wd, 0)) +
1

2
w>dMddwd (79)

which decomposes according to (28) (and due to linear-

ity of ∇ and ∇) into

h(wd) =hu((wd, 0)) + hd((wd, 0)) + hC((wd, 0)) (80)

+
1

2
w>dMddwd (81)

where hu(W ), hd(W ) and hC(W ) are quadratic approx-

imations in X(i) of fu(X), fd(X) and fC(X), respec-

tively. In particular we have

Hh(wd) = Add +Mdd = Add (82)

and thus Add � 0 is identical to the requirement that

h(wd) is a strictly convex model. We further analyze

Hh(wd), which decomposes due to (80) into

Hh(wd) = H fu(X(i)) + H fd(X
(i)) + H fC(X(i)) +Mdd

= diag(s) + (Σ̂k
d )−1 + 0 +Mdd, (83)

where s ∈ Rn, sj = ∂2

∂d2j
fu(X(i)). The diagonal form

of the first term is due to the mutual independence

of the observation terms. The second term is positive
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d2d1 dinfl

convex concave

f HdL

d

Fig. 9 Plot of fu(d, C), restricted to a single dj for typi-
cal fixed C and two quadratic approximations in d1 and d2
(solid). The function and the local quadratic approximation
is convex in d1 ∈ (0, dinfl] where dinfl is the inflection point.
The function is concave in d2 ∈ [dinfl,∞) and we choose an
appropriate convex approximation there (dashed).

semi-definite, see Sect. 3.2.2. However, it is not diago-

nal because of the variable interconnections of the spa-

tial regularization. Due to the high dimensionality of

the matrix eigenvalue problem Add � 0, we propose a

coordinate-wise correction of Add by

Mdd := diag(m) + εI (84)

with m ∈ Rn and some small ε > 0.

To motivate our choice of m, we consider the restric-

tion of hu(W ) to a single component j of Wd, i.e. W =

δ(Ldj , 0) and

hu,j(δ) :=hu(δ(Ldj , 0)) (85)

=fu(X(i)) + δ
∂

∂dj
fu,j(X

(i)) +
1

2
sjδ

2 (86)

(67)≈ fu(X(δ)) =: fu,j(δ0 + δ) (87)

with X(δ) := ϕ(δ,X(i), (Ldj , 0)) and δ0 := X
(i)
dj

. A typi-

cal shape of fu,j(δ0 + δ) is plotted in Fig. 9.

Modification by Mdd amounts to adding a quadratic

term, i.e.

hu,j(δ) := hu(δ(Ldj , 0)) = hu(δ(Ldj , 0)) +
1

2
mjδ

2. (88)

For the choice of mj we distinguish whether fu,j(δ0) is

(locally) convex or concave:

Convex case. For those j where fu,j(δ0 + δ) is convex

near δ0, i.e. sj ≥ 0, we consider hu,j(δ) a suitable,

convex local approximation and set hu,j(δ) = hu,j(δ),

i.e. mj = 0.

Concave case. Whenever we have sj < 0, hu,j(δ) is

concave and we consider a linear model of fu,j instead

and respect the reduced degree of detail by adding a

quadratic proximity term, i.e.

hu,j(δ) = fu,j(X
(i)) + δ

∂

∂dj
fu,j(X

(i)) +
1

2
sjδ

2. (89)

In our work, we set sj := | ∂2

∂d2j
fu(X(i))| = |sj | as a mea-

sure for the deviation of the linear model from fu(X(i))

when moving along δ. Comparing (89) to (88) shows

that mj = sj − sj = −2sj ≥ 0 for the concave case.

The choice of mj for both the convex and concave

case is summarized in the following.

Proposition 1 Let Mdd be defined as in (84) and m

given by

mj :=

{
0 sj ≥ 0

−2sj sj < 0
= |sj | − sj . (90)

Then Add = Add + Mdd is positive definite as required

in (78).

Proof In particular we have sj +mj = |sj | ≥ 0 for all j

and thus

Add = Hh(wd) = diag(s+m) + (Σ̂k
d )−1 + εI � 0. (91)

ut

4.6.5 Choice of MCC

Let λmax(M) denote the largest eigenvalue of a sym-

metric matrix M .

Proposition 2 Choosing

MCC :=λCI + εI (92)

with some small ε > 0 and

λC := max{0, λmax(−Ssym)} (93)

whereS :=ACC −ACdA
−1
dd A

>
Cd (94)

is sufficient to fulfill S
sym � 0 as required in (78).

Proof In particular, we have λCI � −Ssym. Then the

positive definiteness of the Schur complement (77) can

be assessed by

S
sym

=Ssym +MCC = Ssym + λCI + εI (95)

� Ssym − Ssym + εI � 0 (96)

ut

Note that the eigenvalue problem (93) has dimension 6

only and thus λC can be computed efficiently.
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4.7 Computing the Search Direction

Computing the search direction W (i) in (59) requires

solving the linear equality system

Aw = −b (97)

where A (as defined in (75)) is composed of a large,

sparse matrix Add and a very small, dense 6× 6-matrix

ACC as well as dense ACd. Furthermore, ensuring pos-

itive definiteness of A as described in Sect. 4.6 involves

computation of matrix inverses. However, it is possible

to corporately solve the linear equality system (97) and

perform the required steps to ensure A � 0 by using

the Schur complement (see Appendix B.4). Algorithm 2

summarizes the proposed procedure.

Algorithm 2 Combined choice of Mdd, MCC and com-

putation of w = (wd, wC) in (97).

choose Mdd s.t. Add = Add +Mdd � 0 . Proposition 1
solve AddU = A>Cd for U ∈ Rn×6

compute Schur complement S = ACC −ACdU
choose MCC , s.t. S = S +MCC � 0 . Proposition 2
solve SwC = −bC + U>bd for wC ∈ R6

solve Addwd = −bd −A>CdwC for wd ∈ Rn.
set w = (wd, wC)

Note that although we compute wd and wC sep-

arately, we solve the equality system (97), and thus

determine a joint update direction for f(X), see Ap-

pendix B.4.

Solutions to the involved linear equality systems are

found by the bi-conjugate gradients stabilized method

of MATLAB and using a preconditioning matrix which

consists of the diagonal entries of Add only.

4.8 Line Search

The descent direction W (i) computed in the previous

section decreases f(ϕ(t,X(i),W (i))) for some t > 0

if ∇T f 6= 0. To determine an approximate optimal

step scaling, we perform a line search based on Wolfe’s

Rule (Bonnans et al 2003). We respect the component-

wise non-negativity constraint on d by using the quality

function q(X) as defined in (46),

t(i) ≈ arg min
t>0

q(ϕ(t,X(i),W (i))) (98)

and then choose X(i+1) as defined in (49).

4.9 Stopping Criterion

Within a multiscale level, the variables update is iter-

ated as long as the relative improvement of the objec-

tive function value is sufficient, i.e.

f(X(i−1))− f(X(i))

f(X(i−1))
> ε. (99)

Throughout this work we choose ε = 10−5.

4.10 Multiscale Framework

For handling large displacements we employ the state-

of-the-art coarse-to-fine approach known from optical

flow estimation (see e.g. Brox et al (2004)). On each

resolution level, the single scale update described in Al-

gorithm 1 is initialized by the result of the next coarser

scale and is used for warping the previous to the current

frame. The prediction step also provides the initializa-

tion for the coarsest scale which implicitly removes most

of the large displacements.

Warping and image down-scaling use cubic spline

interpolation for high accuracy. The non-negativity of

the depth map values are preserved by bi-linear inter-

polation.

5 Experiments

The experimental section is organized as follows. We in-

troduce the considered image sequences and their prop-

erties in Sect. 5.1. Algorithm implementation and pa-

rameter values are discussed in Sect. 5.2. Section 5.3

demonstrates the importance of the temporal smooth-

ing prior.

While synthetic data comes with accurate ground

truth, we employ two established geometric reconstruc-

tion approaches as a baseline for the performance of

our method on real image sequences. Both can resort

to more information than the proposed recursive mon-

ocular approach and thus are expected to provide more

accurate results. A reference depth estimation is pro-

vided by stereo reconstruction methods in Sect. 5.4.

Egomotion accuracy is compared to the camera track

computed batch-like by a bundle adjustment approach

in Sect. 5.5.

5.1 Data Sets

Freely available databases with automotive image data

including the KITTI2 and the enpeda3 benchmark con-

2 http://www.cvlibs.net/datasets/kitti/
3 http://www.mi.auckland.ac.nz/
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tain only few image sequences which (approximately)

fulfill the constraint that the scene is static.

The novel HCI database4 (Meister et al 2012) con-

tains image sequences recorded from a car driving in

an everyday environment. It was compiled for the eval-

uation of stereo reconstruction algorithms. Thus, two

camera recordings from a stereo rig are available, of

which we only used the left one as input to our algo-

rithm. Here we resort to a publicly available sub-set5 of

five image sequences labeled Avenue, Bend, City, Park-

ing and Village showing almost static real-life scenes.

Each has up to 400 gray-value frames of size 656 px×
541 px, sampled with 25 frames/s and an intensity res-

olution of 12 bit.

Furthermore, we processed two sequences which con-

siderably violate the static-scene assumption due to

moving objects but come up with other interesting fea-

tures. The Junction sequence from the database intro-

duced above is 863 frames long and contains a very

challenging 90◦ turn.

Sequence 2 of set 2 of the enpeda project (denoted

as enpeda-2-2) provides reliable ground truth due to

its synthetic nature. It consists of 396 rectified stereo

image pairs, each with a resolution of 640 px×480 px

and 12 bit, see Vaudrey et al (2008) for details.

5.2 Algorithm Details

5.2.1 Implementation and Runtime

The results presented in this section were obtained with

our research implementation of the method described in

Sects. 2–4. It is mostly MATLAB-based and is not par-

allelized. Consequently, the computing time in full res-

olution (656 px × 541 px) is about 2 minutes per frame.

However, the regular grid structure of the problem

and the reduction to well understood numerical meth-

ods (linear equation solver) renders the method a suit-

able candidate for an efficient computation, e.g. on a

(embedded) GPU.

5.2.2 Parameters

For all real and synthetic sequences we choose the same

parameter set: temporal smoothness parameters σR =

2, σh = 4 and σd = 106 of camera rotation, translation

and depth map, respectively, and spatial smoothness

prior σs = 106. The multiscale framework uses 13 lev-

els, where the resolution decreases by a factor of
√

2

between two adjacent levels. The sequence enpeda-2-2

4 http://hci.iwr.uni-heidelberg.de/Benchmarks/
5 http://hci.iwr.uni-heidelberg.de/VSFM/

requires a slightly larger smoothing parameter for the

optical flow (see (7)) due to its synthetic nature and we

set ρ = 3 px.

Only minimal information is provided by the state

initialization: we choose a constant depth d0(x) = 40

for all x ∈ Ω and a forward movement of the camera,

i.e. R0 = I and h0 = v0(0, 0, 1)>, where v0 is a guess on

the (scalar) vehicle velocity. Variances σ0
d and Σ0

C are

set to large values.

5.3 Temporal Filtering

5.3.1 Relevance

The prediction prior on depth map and camera motion

exploited in (17) and (25), respectively, are essential for

robust depth estimation. Figure 10 presents depth maps

estimated with smoothing parameters σR, σh, σs chosen

considerably larger than the standard (see Sect. 5.2.2)

which renders the temporal smoothness prior ineffec-

tive. The differences to an estimation with effective

prior are striking and show that just relying on the

observations yields corrupted estimates.

5.3.2 Uncertainty Reduction

Figure 11 depicts several fixed levels of the histogram

p̂dfΩ(σkd) of the variance σkd of depth dk, taken over

the whole image plane, as a function of the frame in-

dex k (ordinate). The level lines tend to the left and

thus demonstrate that our approach significantly re-

duces the approximated uncertainty of the depth esti-

mation within a period of about 25 frames.

5.4 Depth Map Evaluation

We start with a detailed description of the acquisition

of the reference depth maps in Sect. 5.4.1. Section 5.4.2

discusses the accuracy of the proposed monocular ap-

proach by means of exemplary results. The employed

statistical error measure is motivated and quantitative

results are discussed in Sect. 5.4.3.

5.4.1 Reference Depth Map d

The synthetic image sequence enpeda-2-2 comes with

accurate and almost dense ground truth. In contrast,

the real image sequences lack ground truth but include

rectified image pairs and we consider the result of a

stereo method as reference depth map d. Stereoscopic

methods can be assumed to be much more accurate (see

Sect. 3.1.2) as they can resort to much more information

in the image pair.
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(a) Avenue sequence, frame 53
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Fig. 10 Importance of temporal regularization (prediction prior) of depth map and camera motion demonstrated for the
(a)–(c) Avenue and (d)–(f) Bend sequence. (a), (d) Image frame, (b), (e), large σR, σh, σd render the temporal smoothness
prior ineffective, (c), (f) with effective temporal smoothness prior. Exploiting temporal context through the prior is essential,
in particular where only few information is available. With ineffective temporal smoothness, regions near the epipole (near
image center) show severe under- (dark blue) and over-estimation (dark red) of depth. Also low-textured regions such as sky
and road in (d) show this effect. Comparing to the image frames, results with effective temporal smoothing appear much more
coherent.
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Fig. 11 Histogram p̂dfΩ(σkd) of depth standard deviation σkd
over iteration k, visualized as contour plot. The lines uni-
formly tend to the left and thus indicate that estimation un-
certainty is effectively reduced, despite online processing with
only two frames at each instant of time.

Choice of reference stereo implementation. As reference

we consider three freely available implementations of

stereo algorithms:

Szeliski et al.: The authors’ implementation6 of Szeliski

et al (2008) included in the Middlebury MRF Li-

brary.

Rhemann et al.: The authors’ implementation7 of Rhe-

mann et al (2011), ranked 17 in the Middlebury

Stereo Evaluation (as on March 22, 2012).

Geiger et al.: The LIBELAS library8 by the authors

of Geiger et al (2010) and developed for large-scale

disparities.

Given the disparity measuresD(x) of an arbitrary stereo

approach as well as the focal length (f = 25 mm), stereo

baseline (b = 30 cm) and pixel size (p = 16µm), we can

compute a calibrated depth map d(x) by

d(x) :=
fb

p
D
−1

(x). (100)

6 http://vision.middlebury.edu/MRF/code/
7 http://www.ims.tuwien.ac.at/research/costFilter/
8 http://www.rainsoft.de/software/libelas.html
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Exemplarily, we provide in Fig. 12 for frame 100 of

the Avenue sequence for each method the depth cal-

ibrated in meters. From the visual comparison of the

depth maps with the corresponding image frame, it be-

comes apparent, that only the method by Geiger et al.

is able to accurately reconstruct depth both at low and

high distances with many details for real outdoor data.

Thus for the evaluation of the depth map estimated by

our method, we only consider the results of Geiger et

al. as reference.

Unknown global scale s. For monocular approaches it

is only possible to derive the scene geometry up to an

unknown scale s ∈ R. Thus, for each frame we estimate

the scale s between d and reference d using a robust es-

timator which we detail in Appendix C.1. The resulting

depth maps s ·d are approximately calibrated to metric

units.

5.4.2 Qualitative Evaluation

Static Real Sequences. Figures 1, 13 and 14 show rep-

resentative reconstructions for sequences Bend, Avenue

and City, respectively. Comments are given in the cap-

tions. All computed depth maps are encoded using a

non-linear color scale. Histograms of image frames are

equalized for visualization with improved contrast.

In Fig. 15, we provide the scaled depth map s · d(x)

as well as the difference maps s · d(x)− d(x), both cal-

ibrated to meters. The exemplary results demonstrate

that the coarse structure of the scene can be recon-

structed correctly. Objects can be resolved with a simi-

lar accuracy as by the stereo method if sufficient depth

information is provided by the camera geometry, see

Fig. 16(a). It deteriorates in the vicinity of the epipole

which confirms the theoretical discussion in Sect. 3.1.2.

In region lacking texture information, both monocu-

lar and stereo methods have to apply some kind of prior

to determine depth. Our monocular approach smoothly

interpolates there, while stereo tends to imply large or

infinite depth here which appears more crisp in the vi-

sualization, see Fig. 16(b).

Regions which do not permit accurate estimation

due to geometry or lack of texture are annotated ac-

cordingly in the covariance map provided with the depth

map, see Fig. 16 (right column), Fig. 6 and Sect. 3.4.1

for the definition. Hence, the depth information can be

considered according to its accuracy by higher-level rea-

soning steps.

Dynamic Real Sequence. The Junction scene possesses

several challenging properties, see Fig. 17. A car crosses

the camera view around frame 595 which violates the

(a) input frame

fa
r

n
e
a
r

(b) estimated depth map

(c) reconstructed scene and camera track

Fig. 13 Avenue sequence: (a) input frame, (b) estimated
depth map, color encoded, (c) triangulation of the scene,
camera pose (green) and camera track (red). The homoge-
neous sky regions between the highly textured trees are nat-
urally assigned to the trees (in terms of depth) due to the
interpolation property of the variational formulation. Recon-
struction accuracy is limited near the epipole (middle) as dis-
cussed in Sect. 3.1.1.

assumption that the scene is static. Depth estimations

are considerably wrong in this image region only and

are corrected within few frames after the moving object

has left the view. This demonstrates the robustness of

the approach w.r.t. model violations.

The method provides accurate depth information

even during a sharp 90◦ turn around frame 750. How-

ever, after the turn (frame 860), the monocular depth

map is distorted in the lower part of the image as the

road surface only provides few information relevant for

depth estimation. Similar to the situation after the ini-

tialization in frame 0, this region is expected to be cor-

rected within the upcoming frames. Depth in the re-

maining image region is reconstructed with similar ac-

curacy as the reference method.

Synthetic dynamic sequence. The synthetic image se-

quence enpeda-2-2 comes with accurate ground truth.

Representative results are shown in Fig. 18. Frame 380
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(a) frame

2
0
0
m

0
m

(b) depth estimated by Geiger
et al (2010)

2
0
0
m

0
m

(c) depth estimated by Szeliski
et al (2008)

2
0
0
m

0
m

(d) depth estimated by Rhe-
mann et al (2011)

Fig. 12 (a) One original (left) image frame of the Avenue sequence and (b)–(d) depth maps estimated by three state-of-
the-art stereo methods, calibrated to meter. Black regions indicate lack of depth information. Only the approach by Geiger et
al. is able to accurately reconstruct depth both at low and high distances with many details for this data. See Sect. 5.4.1 for
details.

(a) input frame

fa
r

n
e
a
r

(b) estimated depth map

(c) reconstructed scene and camera track

Fig. 14 City sequence: (a) input frame, (b) estimated depth
map, color encoded, (c) triangulation of the scene, camera
pose (green) and camera track (red). The approach is robust
towards (minor) violations of the static scene assumption by
moving pedestrians (right).

demonstrates the possible high accuracy of depth recon-

struction. The impact of the violation of the static scene

assumption is demonstrated in frame 100 and causes

only local depth map errors.

5.4.3 Statistical Evaluation

Error measure. In order to compare measurements from

different image positions x and depth d, we relate them

with their expected error σg(x, d) as defined in (14).

Given a depth map d(x) and a reference solution d(x),

we define the following position-wise error measure:

ed(x) :=
f

p

|d(x)− d(x)|
σg(d(x), x)

(101)

with focal length f and pixel size p as in (100). Fur-

thermore, we define a summarizing error measure as

εd :=
√
E {e2d(x)} (102)

where E{·} denotes the expectation value over all pixels

and all frames of an image sequence.

Remark 1 The proposed measure can be interpreted as

the expected error of the involved optical flow estima-

tion process, expressed in pixels units. For the special

case of a stereo line-up, it approximates the disparity

difference |D −D| common for evaluating stereo algo-

rithms, e.g. in the Middlebury (Scharstein and Szeliski

2002) and KITTI (Geiger et al 2012) benchmarks.

Proof We consider the reference solution as correct so-

lution, i.e. d̂ = d in assumption (12). Then the measure

εd
(14)
=
f

p
σu

√√√√E { (d(x)− d(x))2

σ2
d(d(x), x)

}
︸ ︷︷ ︸

≈1

≈ f

p
σu (103)

approximates the expected error of the optical flow mea-

surement. The leading factor scales the displacements

from normalized coordinates to more descriptive pixel

units.
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Fig. 15 Comparison between a stereo and our monocular method. Rows: one frame of a real static sequences. Left column:
reference depth map d(x) estimated by the stereo approach by Geiger et al (2010). Center column: depth map s · d(x)
estimated by the proposed monocular method. The unknown global scale s was estimated for each scene as described in
Appendix C.1. All depth maps use the same color encoding. Right column: point-wise difference s · d(x) − d(x), calibrated
to meters (clipped). Red and blue indicate over- and underestimation, respectively, of monocular relative to stereo depth.
Black pixels lack stereo depth information. The coarse structure is reconstructed correctly and remaining disagreements can
be explained by the entirely different camera setups or interpolation schemes, see discussion in Sect. 5.4.2.
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Fig. 16 Detailed comparison between a stereo and our monocular method. Columns (left to right): image frame (detail);
depth map d estimated by the stereo approach by Geiger et al. Black pixels lack stereo depth information; depth map s · d(x)
resulting from the monocular method proposed in this work; depth map s·d(x) (color) and estimated variance σ(x) (brightness,
black = large variance) of the monocular depth map. (a): Stereo and monocular approaches show a similar ability to separate
the right lamp post from the background. The nearer the object is to the epipole (left in image) the less accurately it can
be resolved by the monocular approach. This inaccuracy is inherent in this camera setup and is annotated accordingly in the
covariance map. (b): Stereo and monocular approaches rely on the existence of textured regions to detect distinct depth edges
(trunk in front of horizon). In un-textured regions (sky), most stereo methods assume large depth (encoded black) while the
proposed monocular method interpolates from neighboring regions, however marks the value as uncertain. See Sect. 5.4.2 for
further discussion.

For a stereo setup we have σg(d, x) = σg,s(d, x)

(see (15)) and assuming d(x) ≈ d(x), the pixel-wise

error measure can be reformulated as

ed(x)
(101)
=

f

p

|d(x)− d(x)|
σg(d(x), x)

≈ f

p

|d(x)− d(x)|√
σg(d(x), x)σg(d(x), x)

(16)
=
fb

p

|d(x)− d(x)|
d(x)d(x)

(100)
= |D(x)−D(x)|

which confirms the choice of ed. Vice versa, the dispar-

ity difference can be interpreted as weighting the depth

difference according to the expected error σg,s. ut

Thus, εd is a sensible measure to assess the quality of

the proposed method. In combination with the geomet-

ric error model introduced in Sect. 3.1.2, it is possible

to predict the expected depth error for other scenarios.

Evaluation basis. For each frame, the unknown com-

mon scale of depth map d and translation h were cor-

rected as described in Appendix C.1. For the calculation

of σg, the monocular egomotion and the stereo depth

map was used if no ground truth was available. Pix-

els without a reference value or containing distinct dy-

namic components were excluded. For sequence enpeda-

2-2 ground truth provides pixel-wise scene flow informa-

tion while for the Junction sequence, we completely ex-

cluded affected frames 584–620 and 644–670. The pro-

posed method requires up to 30 frames to compensate

the weak initialization and we also do not include them

in the analysis. In total, more than 638 ·106 depth mea-

surements were considered.

Results and discussion. Figure 19 plots the empirical

versus the predicted depth error and confirms the ap-

proximate linear relation between them which we as-

sumed in the definition of the error measure (101)–

(102).

Table 1 lists the computed error measures εd for

each of the considered image sequences. For most se-

quences the error stays below 1 px. A closer analysis in

Fig. 20 shows that for the Junction sequence major er-

rors are located mostly near the lower image boundary

where the road surface does not provide any hints for

monocular methods, see also Fig. 17. The same holds

for the Avenue sequence, where also large differences

occur near the horizon, see also Fig. 16(b).

5.5 Egomotion Evaluation

Reference camera motion is obtained by ground truth

information or by processing the monocular data with
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Fig. 17 Five frames from the Junction sequence which is challenging due to moving objects and a 90◦-turn. Columns (left
to right): image frame; stereo depth map; calibrated monocular depth map. After (a) frame 580 a car crosses the scene. (b)
The monocular depth map is disturbed as the approach tries to explain the optical flow by a static depth map. Regions outside
the dynamic regions are hardly affected, which demonstrates the robustness against model violations. (c) The distortions are
corrected when the car has left. (d) During the following turn, the monocular depth maps shows similar accuracy as the
stereo map despite large horizontal displacements. (e) Right after the turn, the scene is reconstructed mostly correct, but
disturbances in the lower region can be observed. Here, the low-textured road surface does not provide any correspondences
along the lane which corresponds to depth in this case while the stereo estimation can rely on horizontal gradients.
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Fig. 18 Synthetic sequence enpeda-2-2. Columns (left to right): left image frame; ground truth depth map d(x); scaled
monocular depth map s · d(x); difference s · d(x)− d(x). Unknown scale s was estimated as described in Appendix C.1. Black
pixels indicate missing reference values. (a) Frame 380 shows the potentially high precision of the monocular approach. (b)
Two moving objects (cars) which clearly violate the static scene assumption and lead to deteriorated depth estimations in this
regions. Remaining image regions are not affected, which demonstrates the robustness against model violations. The epipole
is near the image center where depth measurement is almost impossible for the monocular setup.
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Fig. 19 Log-log-plot of the actual empirical depth error fp−1|s ·d−d| versus the error prediction σg based on the model (14).
Samples were gained from most of the pixels and frames of the sequence and summarized by collecting them in σg-bins
(width 0.1 in log10-scale). The plot confirms the linear relation between the predicted and actual depth error assumed in the
definition of the error measure εd, see Sect. 5.4.3 for details.

a bundle adjustment method, see Sect. 5.5.1. The in-

tegrated camera track and the frame-wise differential

motion is evaluated in Sect. 5.5.2 and Sect. 5.5.3, re-

spectively.

5.5.1 Reference Camera Track (R, h)

For the synthetic image sequence enpeda-2-2 we resort

to the ground truth camera motion as reference.

To evaluate egomotion estimation of the real image

sequences, we measure a reference camera track using

the freely available Voodoo Camera Tracker9 (VCT)

which implements a bundle adjustment method and is

based on tracking sparse image features. We manually

set the internal camera parameters and chose the fol-

lowing parameters: free move mode, Förstner detector,

cross-correlation for correspondence analysis, fixed fo-

cal length.

9 http://www.digilab.uni-hannover.de/docs/manual.html,
v1.2.0b
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(b) Junction: εd(x)

Fig. 20 Pixel-wise disparity estimation difference εd(x) over
all frames for a sequence. The spatial location of large devi-
ations help to identify the source of the error.

scene εd εR εh
Avenue 2.18 px 0.0155◦ 2.75 %
Bend 0.94 px 0.0143◦ 1.54 %
City 0.66 px 0.0169◦ 15.29 %
Parking 0.33 px 0.0107◦ 9.14 %
Village 0.79 px 0.0171◦ 3.74 %
Junction 6.11 px 0.0264◦ 43.04 %
enpeda-2-2 0.98 px 0.0155◦ 9.15 %

Table 1 The table shows the quantitative evaluation for the
considered scenes in comparison to more accurate reference
methods (stereo, bundle adjustment) or ground truth. Dispar-
ity estimation difference εd (in pixel) is crucial for the quality
of depth estimation, see Sect. 5.4.3 for details. For assessing
the quality of egomotion estimation, we provide the mean
difference of the rotational component (εR, in degree/frame)
and the translational component relative to reference speed
(εh, in percent/frame), see Sect. 5.5.

Note that bundle adjustment computes the camera

poses jointly in a batch-processing manner and there-

fore can be expected to return precise results. In con-

trast, the proposed monocular approach estimates the

trajectory by recursively integrating up camera motion
and thus is subject to integration errors.

Unknown global scale. Before comparison, the unknown

global scale between the estimated and the reference

track is approximated by a least-square match of the

camera trajectories. Furthermore, the reference track is

normalized to length 1.

5.5.2 Integrated Track

Figure 21 demonstrates for five of the seven sequences

a remarkable agreement of our monocular online es-

timates with VCT. Remaining differences can be ex-

plained by a limited sensitivity towards acceleration

along camera principal axis, which is crucial for the

Junction sequence. However, this inaccuracy is correctly

reflected by the estimated camera standard deviation,

see Fig. 7.

5.5.3 Statistical Evaluation

Error measures. For each frame, we compare the cam-

era motion estimated by our monocular approach (R, h)

and the reference method (R, h) and denote their Lie

matrix representation (see (1)) by Q and Q, respec-

tively. Based on the motion difference Qe := Q−1Q

with elements (Re, he), we define the frame-wise error

measurements

eR := cos−1((trRe − 1)/2). (104)

eh :=
‖he‖
‖h‖

. (105)

The translation measure is normalized w.r.t. ‖h‖ to can-

cel out the unknown global scale. We define the averages

over all frames of a sequence as εR and εh, respectively.

Results and discussion. Table 1 summarizes the ego-

motion quality for each considered sequence. While the

rotational component is very accurate for all cases, the

translational measure is high for those sequences which

show also large changes in the velocity along the camera

view, see also Fig. 21. This property is also confirmed

by the estimated camera motion uncertainty which is

provided for every frame, see Sect. 3.4.1 and Fig. 7.

6 Conclusion and Further Work

We presented an approach to the estimation of dense

scene structure and camera motion from monocular

image sequences, taken from a camera positioned in-

side a fast moving car. The approach optimizes the

tradeoff between model expressiveness and computa-

tional efficiency. In particular, it works in an online

two-frame mode. A sound mathematical framework was

presented for the joint update of camera pose and depth

map which respects the manifold structure for accu-

racy, resorts to complete second-order information for

efficiency, and guarantees a decrease of the objective

function until convergence.

Experiments demonstrated that the reconstruction

quality of depth and camera motion is similar to refer-

ence methods which can resort to considerably more in-

formation. Annotation by uncertainty estimations help

to identify components which are inherently inaccurate

due to the camera setup or lack of correspondences.

Our further work will focus on occlusion handling in

connection with reliable segmentation and explanation

of independently moving objects, and related mid-level

tasks of traffic scene analysis.
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(h) Euclidean distance between tracks over time

Fig. 21 Comparison of the estimated camera tracks to a bundle adjustment method or ground truth (enpeda-2-2 only).
(a)–(g) Camera tracks estimated by the proposed monocular recursive approach (red, thick line) and the reference track
(blue, thin line) for the considered sequences. Markers indicate points equidistant in time. The trajectories of the reference
solution were normalized to length 1. The monocular tracks were scaled such that they minimize the least-squares Euclidean
distance. No rotational fitting was applied. (h) Euclidean distances (relative to reference track length) between the trajectory
positions over time (normalized to [0, 1]). The recursively estimated track agrees well with the reference track for most tracks.
Estimated velocities along camera view differ and cause divergence of the tracks. This is inevitable for this camera setup and
agrees with the estimated camera pose variance, see Fig. 7.
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A Geometric Model

A.1 Implicit Epipolar Constraint

Any point pair (x, x′) = (x, x − u(x)) as defined by (5) is
connected via the essential matrix E := [h]×R through the
constraint (11) (Hartley and Zisserman 2000) as shown here:(

x′

1

)>
E

(
x
1

)
(106)

(4)
=

(
x′

1

)>
([h]×R)d−1(x)R>

(
d′(x′)

(
x′

1

)
− h

)
(107)

=(d−1(x)d′(x′))

(
x′

1

)>
[h]×

(
x′

1

)
= 0 (108)

Here we used the equalities [v]×v = 0 and v>[w]×v = 0 for
all v, w ∈ R3.

B Optimization on SE(3) × Rn

B.1 Manifold SE(3): Definitions

B.1.1 Mappings Exp and Log

For the Lie group SE3 and the associated Lie algebra se3,
the exponential map Exp : se3 7→ SE3 and its inverse (within
the neighborhood of 0) Log : SE3 7→ se3 can be expressed
explicitly:

Exp

((
[ω]× v

0> 0

))
=

(
R(ω) P (ω)v
0> 1

)
(109)

R(ω) = I +
sin(‖ω‖)
‖ω‖

[ω]× +
1− cos(‖ω‖)
‖ω‖2

[ω]2× (110)

P (ω) = I +
1− cos(‖ω‖)
‖ω‖2

[ω]× +
‖ω‖ − sin(‖ω‖)

‖ω‖3
[ω]2× (111)

Log

((
R h
0> 1

))
=

(
[ω]× (R) P−1(ω)h

0> 0

)
(112)

[ω]× (R) =

{
0 if θ(R) = 0
θ(R)

2 sin θ(R)
(R−R>) θ(R) 6= 0

(113)

θ(R) = cos−1

(
tr(R)− 1

2

)
(114)

P−1(ω) = I −
1

2
[ω]× +

(
1−
‖ω‖

2
cot
‖ω‖

2

)
[ω]2×

‖ω‖2
(115)

B.1.2 Christoffel-Symbols Γ kij

For SE3 the Christoffel symbols Γkij , i, j, k ∈ {1, . . . , 6} are

Γ 3
12 = Γ 1

23 = Γ 2
31 = +

1

2
, (116)

Γ 2
13 = Γ 3

21 = Γ 1
32 =−

1

2
, (117)

Γ 6
15 = Γ 4

26 = Γ 5
34 = + 1, (118)

Γ 5
16 = Γ 6

24 = Γ 4
35 =− 1, (119)

and zero otherwise, see e.g. Žefran et al (1999).

B.2 Modified Descent Direction

Proposition 3 (Modified descent direction) Let ∇T f ∈
TIG be a gradient of f at X(i) as defined in (55), (57), i.e.

∇T f = L∗X(i)∇Gf(X(i)). (120)

Then for any positive definite linear operator B(i) on the
tangent space, i.e.

B : TIG 7→ TIG, 〈V,BV 〉G > 0 ∀V ∈ TIG, V 6= 0, (121)

we obtain a descent direction

W := −B(i)∇T f ∈ TIG (122)

of f , i.e. it fulfills

d

dt
f(ϕ(t,X(i),W ))

∣∣∣∣
t=0

< 0 . (123)

Proof

d

dt
f(ϕ(t,X(i),W ))

∣∣∣∣
t=0

(124)

=

〈
∇f(X(i)),

d

dt
ϕ(t,X(i),W )

〉∣∣∣∣
t=0

(125)

(50)
=
〈
∇f(X(i)), LX(i)W

〉
(126)

(52)
=
〈
∇Gf(X(i)), LX(i)W

〉
G

(127)

(122)
= −

〈
∇Gf(X(i)), LX(i)B(i)∇T f

〉
G

(128)

=−
〈
L∗X(i)∇Gf(X(i)), B(i)∇T f

〉
G

(129)

(55)
= −

〈
∇T f,B(i)∇T f

〉
G

(121)
< 0 . (130)

ut

B.3 Function Approximation

Proposition 4 (Quadratic approximation) The linear
equality system (63) can be interpreted as the optimality con-
dition of a quadratic function,

h(W ) := f(X(i)) + 〈b,W 〉G +
1

2
〈W,AW 〉G, (131)

and h(tW ) is a local quadratic approximation of the objective
function f(ϕ(t,X(i),W )) at X(i) for small t, i.e.

h(tW ) ≈ f(ϕ(t,X(i),W )). (132)

Proof This can be show by verifying that f and h match
at t = 0:

Function value:

h(tW )|t=0 =h(0) = f(X(i)) (133)

First derivative:

d

dt
h(tW )|t=0 =b = 〈W,∇T f〉G (134)

(55)
=
〈
W,L∗X(i)∇f(X(i))

〉
G

(135)

(124)
=

d

dt
f(ϕ(t,X(i),W ))

∣∣∣∣
t=0

(136)
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Second derivative:

d2

dt2
h(tW )|t=0

(62)
= 〈W,∇W∇T f〉G (137)

(39)
=
〈
W, lim

t→0
t−1

(
L∗ϕ(t,X(i),W )∇f(ϕ(t,X(i),W )) (138)

−L∗X(i)∇f(X(i))
)〉

(139)

=
d

dt

〈
W,L∗ϕ(t,X(i),W )∇f(ϕ(t,X(i),W ))

〉∣∣∣∣
t=0

(140)

(124)
=

d2

dt2
f(ϕ(t,X(i),W ))

∣∣∣∣
t=0

(141)

ut

B.4 Schur Complement

Given a linear equality system(
A B
C D

)(
x
y

)
=

(
a
b

)
(142)

with A ∈ Rn×n, B,C> ∈ Rn×m, D ∈ Rm×m, x, a ∈ Rn
and y, b ∈ Rm. The Schur complement of an invertible D is
defined as S := A−BD−1C.

Then the solution to (142) can be determined by first
solving

Sx = a−BD−1b (143)

w.r.t. x and by then substituting x in Bx + Dy = b and
solving for y:

Dy = b−Bx . (144)

This can be easily verified using back-substitution.
Furthermore, the symmetric matrix M :=

(
A B
B> D

)
is pos-

itive definite if and only if S � 0 and D � 0, see e.g. Golub
and Loan (1996).

C Evaluation

C.1 Depth Map Scale Estimation

Given a depth map sd(x) with unknown global scale s and a
reference d(x), we robustly estimate the unknown scale s as

s = median

{
d(x)

d(x)

∣∣∣∣∣x ∈ Ω,w(x) ≤ p10

}
, (145)

where p10 denotes the 10th percentile of the weights

w(x) := σd(x)σd(x) (146)

and σd and σd are estimators for the expected error of d and

d, respectively.
For the monocular method, we choose σd(x) as the local

variance of the monocular depth map, see Sect. 3.4.1. If d is
provided by a stereo method, we approximate the inaccuracy

by σd(x) = b−1d
2
(x), see Sect. 3.1.2 for a motivation.

For ground truth as available for the synthetic enpeda-2-2
data set we assume a unit σd(x). Missing values are marked
by setting σd(x) =∞.
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